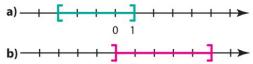
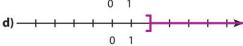
Inégalités et intervalles


Fiche d'exercices


(Sésamath page 78)

Intervalles

30 On considère des droites graduées sur lesquelles on a marqué des ensembles de nombres.

Donner l'intervalle correspondant.

Black Représenter sur une droite graduée et décrire, à l'aide d'un intervalle, chacun des ensembles de nombres réels xtels que:

a)
$$0 \le x \le 3$$

b)
$$-2 < x < 1$$

c)
$$x \leq 9$$

d)
$$x > -3.5$$

Représenter sur une droite graduée chacun des intervalles suivants.

c)
$$]-\infty; 2]$$

33 Écrire les inégalités vérifiées par les réels x pour chacun des cas suivants.

a)
$$x \in [0; 1,2]$$

b)
$$x \in \left[-\frac{5}{3}; 3 \right]$$

c)
$$x \in [4,73; +\infty[$$

d)
$$x \in]-\infty : 0[$$

34 Recopier et compléter par ∈ et ∉.

b)
$$-\pi$$
 ...]-3;-1[

c) 6 ...
$$\left[\frac{7}{3}; +\infty\right]$$

36 Soit I = [-6; 8] et J = [-6; 8]

Dire si chacun des nombres suivants appartient à I, à J, àl∩J,àl∪J.

Déterminer l'intersection et la réunion des intervalles suivants.

b)
$$]-\infty$$
; 7,5] et [10; 22]

c)]-1; +
$$\infty$$
[et]- ∞ ; 1[

38 Simplifier, lorsque c'est possible, l'écriture des ensembles suivants.

a)
$$[-1;3,5] \cap [1,7;7]$$

b)]-
$$\infty$$
 ; - π] \cup [-3 π ; π [

c)
$$[-7,1;2] \cap [2;+\infty[$$

d)
$$[-5;0] \cup [3;+\infty[$$

Inégalités

39 Soit x un réel tel que $x \le 1000$.

Que peut-on en déduire pour : **a)** 1,5x? **b)** $\frac{x}{50}$? **c)** $-\frac{1}{10}x$? **d)** x – 30?

a)
$$1.5x^{2}$$

b)
$$\frac{x}{50}$$

c)
$$-\frac{1}{10}x$$

Soit $m \in [-\infty; 4]$. Que peut-on en déduire pour 3m et 2m - 1?

41 Soit x un nombre réel tel que $2 \le x \le 4$. Donner un encadrement des expressions suivantes.

a)
$$x - 10$$

b)
$$1,5x$$

c)
$$x + 15$$

d)
$$-4x$$

Soit a un nombre réel tel que $-3 \le a \le 1,5$. Donner un encadrement des expressions suivantes.

a)
$$a + 5$$

c)
$$\frac{a}{3}$$

b)
$$2a$$
 c) $\frac{a}{3}$ **e)** $-4a + 1$ **f)** $\frac{a+3}{2}$

Soit t un nombre réel tel que 3 < t.

Que peut-on dire du résultat des expressions suivantes ?

44 On sait que 1,41 $< \sqrt{2} < 1$,42.

Sans calculatrice, donner un encadrement des nombres suivants.

a)
$$2\sqrt{2}$$

b)
$$\sqrt{2} - 0$$
,

c)
$$\sqrt{2} + 3$$

b)
$$\sqrt{2} - 0.5$$
 c) $\sqrt{2} + 3$ **d)** $5 - 2\sqrt{2}$

45 1. Marco affirme qu'il a une somme S entre 100 et 160 euros sur un compte en banque.

Ses parents rajoutent 30 euros sur ce compte. Que peut-il

affirmer maintenant? Marco dépense 80 euros pour ache-

ter un vélo d'occasion. Que peut-il dire de la somme restant sur son compte?

Inéquations du premier degré

46 Résoudre dans \mathbb{R} les équations suivantes.

a)
$$x-7=4$$
 b) $2x=13$ **c)** $9-x=5$ **d)** $4x=0$

Résoudre dans \mathbb{R} les équations suivantes.

a)
$$3x + 5 = 4x - 7$$

b)
$$2x - 9 = 8x + 3$$

c)
$$-2x + 3 = 3x - 1$$

d)
$$5 - 2x = x$$

e)
$$1 + \frac{3}{10}x = 4 - \frac{2}{5}x$$

c)
$$-2x + 3 = 3x - 1$$

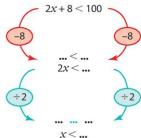
e) $1 + \frac{3}{10}x = 4 - \frac{2}{5}x$
d) $5 - 2x = x$
f) $x^7 + 3x - 2 = 7x + 4 + x^7$

48 Résoudre dans \mathbb{R} les équations suivantes.

a)
$$4x - 5 = 9x + 4$$
 b) $\frac{5}{4}x = \frac{25}{16}$

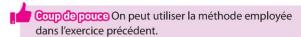
b)
$$\frac{5}{4}x = \frac{25}{16}$$

c)
$$x^2 + 3 - x = x^2 + 10x - 7$$
 d) $5x = 5(x - 2) + 3$


d)
$$5x = 5(x - 2) + 3$$

e)
$$\frac{1}{2} + 4x = 5 - \frac{6}{7}x$$
 f) $(x-7)^2 = (x+4)^2$

f)
$$(x-7)^2 = (x+4)$$


• Inéquations du premier degré

49 Recopier et compléter la résolution de l'inéquation 2x + 8 < 100.

50 On considère l'inéquation -4x - 40 > 60 d'inconnue

En écrivant les opérations effectuées à chaque étape sur les deux membres, résoudre cette inéquation.

51 Même exercice que le précédent pour les inéquations suivantes.

a)
$$4x + 5 \le -x + 100$$

b)
$$x - 10 \le 4x + 23$$

 \square Résoudre dans $\mathbb R$ les inéquations suivantes et donner l'ensemble des solutions sous forme d'intervalle.

a)
$$2x + 2 \le 10$$

b)
$$4x + 5 < -25$$

c)
$$-2x + 6 \le 0$$

d)
$$-3x - 7 \ge 101$$

Résoudre dans \mathbb{R} les inéquations suivantes.

a)
$$3x + 2 \le x - 14$$

b)
$$-2x-5 > 4x+31$$

c)
$$9x + 19 \le -x + 51$$

d)
$$-3x + 5 < -x + 17$$

54 Donner, sous forme d'intervalle, l'ensemble des solutions des inéquations suivantes.

a)
$$2(x+1) - 7x > 5 - x$$

b)
$$4x + 5 \le 3(x - 1) + 3$$

c)
$$3(x+4) > 0$$

d)
$$\frac{x-5}{2} \le 0$$

Comparaison

55 Soit les expressions A = 45 + 5x et B = 1000 - 5x. Comment faut-il choisir x pour que le résultat de A soit supérieur au résultat de B?

Comparer les expressions 5 + 2x et x + 9 pour tout nombre réel x.

Comparer 9 + $\frac{1}{2}x$ et 1 pour tout nombre réel x.

Comparer A = -6x + 150 et 0 pour tout nombre réel x.

Modélisation

61 Yanis veut délimiter une parcelle rectangulaire de pelouse avec des bordures en bois.

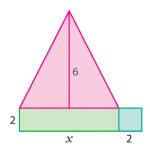
Il a les contraintes suivantes.

La longueur est de 5 mètres plus grande que la largeur.

 Yanis dispose de 120 mètres de bordures au maximum et souhaite trouver toutes les largeurs possibles. Modéliser ce problème par une inéquation.

62 Assia a acheté des graines de carottes à 2,90 euros pour les semer dans son jardin. Elle compte revendre quelques kilos de carottes à ses amis au prix de 1,50 euros le kilo. Elle cherche à connaître le nombre de kilos

qu'elle doit vendre pour faire un bénéfice de 25 euros.


- 1. En notant x le nombre de kilos de carottes à vendre, modéliser le problème par une inéquation.
- 2. Résoudre le problème.

Rémi a gagné au loto : il a le choix entre deux lots :

- une somme de 100 000 euros puis 1 400 euros par mois
- une somme de 5 000 euros puis 2 000 euros par mois à vie. Il cherche à savoir au bout de combien de mois écoulés la deuxième offre devient plus intéressante.
- 1. En notant x le nombre de mois, modéliser le problème par une inéquation.
- 2. Résoudre le problème.

64 On considère la figure ci-contre.

Les longueurs sont en cm. On souhaite que l'aire de cette figure dépasse 50 cm². Modéliser ce problème par une inéquation puis le résoudre.

Valeurs absolues

65 Calculer.

c)
$$\left| -\frac{100}{3} \right|$$

e)
$$|\sqrt{17} - 2|$$

f)
$$|2 - \sqrt{17}|$$

c)
$$\frac{|5-8|-1}{2}$$

- 1. a) Sur une droite graduée, placer les nombres 5 et 1.
- **b)** Calculer la distance entre 5 et $\frac{1}{2}$.
- 2. Reprendre la question 1. avec 3 et $-\frac{4}{5}$
- 3. Reprendre la question 1. avec –1 et $-\frac{4}{5}$
- 68 À l'aide d'une valeur absolue, écrire la distance entre :

a)
$$\frac{125}{3}$$
 et 2

b)
$$\sqrt{2}$$
 et 5

c) -5 et
$$\frac{12}{5}$$

69 Sans calculatrice, simplifier :

b)
$$8 - \frac{2}{3}$$

c)
$$2 - \frac{9}{2}$$

f)
$$\left| \frac{1}{2} + 6 \right|$$