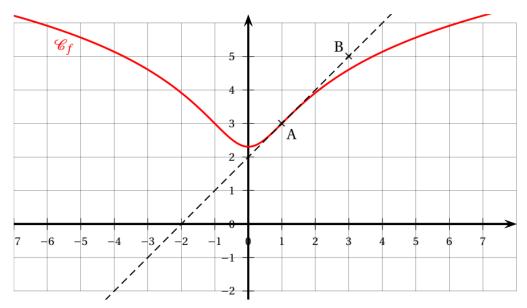
Évaluation n°2 - 31 janvier 2023 (2h00)

Exercice 1 (9 points) Asie Mai 2022 S1

Soit f une fonction définie et dérivable sur \mathbb{R} . On considère les points A(1;3) et B(3;5).

On donne ci-dessous C_f la courbe représentative de f dans un repère orthogonal du plan, ainsi que la tangente (AB) à la courbe C_f au point A.



Les trois parties de l'exercice peuvent être traitées de manière indépendante.

Partie A

1. Déterminer graphiquement les valeurs de f(1) et f'(1).

On lit sur le graphique : f(1) = 3 et f'(1) = 1 (nombre dérivé égal au coefficient directeur de la droite (AB)).

- 2. La fonction f est définie par l'expression $f(x) = \ln(ax^2 + 1) + b$, où a et b sont des nombres réels positifs.
 - (a) Déterminer l'expression de f'(x).

Comme $a \ge 0$ et $x^2 \ge 0$, on a $ax^2 \ge 0$, donc $ax^2 + 1 \ge 1 > 0$: la fonction f est donc dérivable sur \mathbb{R} et sur cet intervalle $f'(x) = \frac{2ax}{ax^2 + 1}$.

(b) Déterminer les valeurs de a et b à l'aide des résultats précédents.

Les résultats du 1. peuvent s'écrire :

$$\begin{cases} f(1) & = & 3 \\ f'(1) & = & 1 \end{cases} \Leftrightarrow \begin{cases} \ln(a+1) + b & = & 3 \\ \frac{2a}{a+1} & = & 1 \end{cases}$$

La deuxième équation donne $2a = a + 1 \Leftrightarrow a = 1$ et en reportant dans la première :

$$ln(1+1) + b = 3 \iff b = 3 - ln2.$$

On a donc sur \mathbb{R} , $f(x) = \ln(x^2 + 1) + 3 - \ln 2$.

Partie B

On admet que la fonction f est définie sur \mathbb{R} par

$$f(x) = \ln(x^2 + 1) + 3 - \ln(2).$$

1. Montrer que f est une fonction paire.

Quel que soit le réel x, $f(-x) = \ln[(-x)^2 + 1] + 3 - \ln 2 = \ln(x^2 + 1) + 3 - \ln(2) = f(x)$. La fonction f est donc paire (la représentation graphique de f est donc symétrique autour de l'axe des ordonnées).

2. Déterminer les limites de f en $+\infty$ et en $-\infty$. On a $\lim_{x \to +\infty} x^2 = +\infty$ d'où $\lim_{x \to +\infty} (x^2 + 1) = +\infty$ et par composition $\lim_{x \to +\infty} \ln(x^2 + 1) = +\infty$ De plus, $\lim_{x \to +\infty} 3 - \ln 2 = 3 - \ln 2$ donc $\lim_{x \to +\infty} f(x) = +\infty$. La fonction étant paire $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty$.

3. Déterminer l'expression de f'(x).

Étudier le sens de variation de la fonction f sur \mathbb{R} .

Dresser le tableau des variations de f en y faisant figurer la valeur exacte du minimum ainsi que les limites de f en $-\infty$ et $+\infty$.

Comme $x^2 + 1 > 0$ quel que soit le réel x, la fonction f est dérivable sur \mathbb{R} et sur cet intervalle :

$$f'(x) = \frac{2x}{x^2 + 1}$$

Le dénominateur étant supérieur à zéro le signe de f('x) est donc celui de 2x, donc :

f'(x) < 0 sur \mathbb{R}_{-}^{*} et f'(x) > 0 sur \mathbb{R}_{+}^{*} . Conclusion f est décroissante sur \mathbb{R}_{-}^{*} et croissante sur \mathbb{R}_{+}^{*} .

Le nombre $f(0) = \ln 1 + 3 - \ln 2 = 3 - \ln 2$ est donc le minimum de la fonction sur \mathbb{R} . D'où le tableau de variations:

х	$-\infty$		0		+∞
f'(x)		_	0	+	
f(x)	+∞		3-ln2		+∞

4. À l'aide du tableau des variations de f, donner les valeurs du réel k pour lesquelles l'équation f(x) = k admet deux solutions.

D'après le tableau de variations l'équation f(x) = k admet deux solutions si $k > 3 - \ln 2$.

Résoudre l'équation $f(x) = 3 + \ln 2$. *5*.

$$f(x) = 3 + \ln 2$$

$$\Leftrightarrow \ln(x^2 + 1) + 3 - \ln(2) = 3 + \ln(2)$$

$$\Leftrightarrow \ln(x^2 + 1) = 2\ln(2)$$

$$\Leftrightarrow \ln(x^2 + 1) = \ln 4$$

 $\Leftrightarrow x^2 + 1 = 4$ (par croissance de la fonction logarithme)

soit
$$x^2 = 3$$
, d'où deux solutions $S = \{-\sqrt{3}; \sqrt{3}\}$.

Exercice 2 (9 points) Am du Sud Sept 2022 S2

Le but de cet exercice est d'étudier la fonction f, définie sur]0; $+\infty[$, par :

$$f(x) = 3x - x\ln(x) - 2\ln(x)$$

PARTIE A: Étude d'une fonction auxiliaire g

Soit g la fonction définie sur]0; $+\infty[$ par

$$g(x) = 2(x-1) - x\ln(x)$$

On note g' la fonction dérivée de g. On admet que $\lim_{x \to +\infty} g(x) = -\infty$.

- 1. Calculer g(1) et g(e).
- $g(1) = 2 \times 0 1 \times 0 = 0$;
- $g(e) = 2 \times (e-1) e \times lne = 2e 2 elne = 2e 2 e = e 2$.
 - 2. Déterminer $\lim_{x\to 0^+} g(x)$ en justifiant votre démarche.

On sait que $\lim_{x\to 0^+} (x \ln x) = 0$ et $\lim_{x\to 0^+} 2(x-1) = -2$ donc, par somme, $\lim_{x\to 0^+} g(x) = -2$.

3. Montrer que, pour tout x > 0, $g'(x) = 1 - \ln(x)$. En déduire le tableau des variations de g sur]0; $+\infty[$.

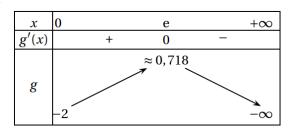
g est une somme de produits de fonctions dérivables sur]0; $+\infty[$ et sur cet intervalle :

$$g'(x) = 2 \times 1 - \ln x - x \times \frac{1}{x} = 2 - \ln x - 1 = 1 - \ln x.$$

Étude du signe de la dérivée : $g'(x) = 1 - \ln x$:

- $1 \ln x > 0 \iff 1 > \ln x \iff \ln x \iff e > x$, donc g est croissante sur l'intervalle [0]; e[;
- $1 \ln x < 0 \iff 1 = \ln x \iff \ln e = \ln x \iff e = x$, donc g est décroissante sur l'intervalle]e; $+\infty$ [;
- $1 \ln x = 0 \iff 1 < \ln x \iff \ln e < \ln x \iff e < x$, donc g(e) = e 2 est le maximum de g sur $|0: +\infty[$.

D'où le tableau de variations de g:



4. Montrer que l'équation g(x) = 0 admet exactement deux solutions distinctes sur]0; $+\infty[: 1 \text{ et } \alpha \text{ avec } \alpha \text{ appartenant à l'intervalle } [e; +\infty[.$

On donnera un encadrement de α à 0,01 près.

- Sur l'intervalle]0 ; e[, la fonction g est dérivable, donc continue ; comme -2 < 0 < e, il existe d'après le théorème des valeurs intermédiaires un réel unique β de l'intervalle]0 ; e[, tel que $g(\beta) = 0$. Or de façon évidente g(1) = 0, donc $\beta = 1$;
- Sur l'intervalle]e; $+\infty$ [, la fonction g est dérivable, donc continue ; comme 0,718 > 0, il existe un réel unique α tel que $g(\alpha) = 0$, avec $\alpha \in]e$; $+\infty$ [.

On a $g(4,9) \approx 0.01$ et $g(5,0) \approx -0.05$, donc $4.9 < \alpha < 5.0$; $g(4,92) \approx 0.0009$ et $g(4,93) \approx -0.005$, donc $4.92 < \alpha < 4.93$.

5. En déduire le tableau de signes de g sur]0; $+\infty[$.

D'après la question précédente on peut dresser le tableau de signes de g sur]0; $+\infty[$:

-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 140	1000	40 512	,1105 00 5	9 501 10
	x	0		1		α	+∞
	g		_	0	+	0	_

PARTIE B : Étude de la fonction *f*

On considère dans cette partie la fonction f, définie sur]0; $+\infty[$,par

$$f(x) = 3x - x\ln(x) - 2\ln(x).$$

On note f' la fonction dérivée de f.

La représentation graphique \mathcal{C}_f de cette fonction f est donnée dans le repère $(0; \vec{\iota}, \vec{\jmath})$ ci-dessous. On admet que : $\lim_{x\to 0} f(x) = +\infty$.

1. Déterminer la limite de f en $+\infty$ en justifiant votre démarche.

On a:
$$f(x) = x \left[3 - \ln x - 2 \frac{\ln x}{x} \right]$$
;

Or
$$\lim_{x \to +\infty} \left(\frac{\ln x}{x} \right) = 0$$
, et $\lim_{x \to +\infty} (-\ln x) = -\infty$, donc par somme de limites

$$\lim_{x \to +\infty} \left(3 - \ln x - 2 \frac{\ln x}{x} \right) = -\infty, \text{ et donc par somme de limites} :$$

$$\lim_{x \to +\infty} \left[3 - \ln x - 2 \frac{\ln x}{x} \right] = -\infty$$

 $\lim_{x \to +\infty} \left[3 - \ln x - 2 \frac{\ln x}{x} \right] = -\infty.$ Comme $\lim_{x \to +\infty} x = +\infty$, par produit de limites : $\lim_{x \to +\infty} f(x) = -\infty$.

2. (a) Justifier que pour tout x > 0, $f'(x) = \frac{g(x)}{x}$. Sur]0; $+\infty$ [, la fonction f somme de produits de fonctions dérivables sur cet intervalle est dérivable et :

$$f'(x) = 3 - \ln x - x \times \frac{1}{x} - 2 \times \frac{1}{x}$$

$$= 3 - \ln x - 1 - \frac{2}{x}$$

$$= 2 - \ln x - \frac{2}{x}$$

$$= \frac{2x - x \ln x - 2}{x}$$

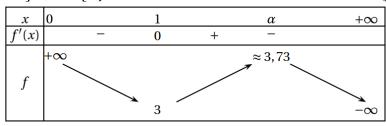
$$= \frac{2(x - 1) - x \ln x}{x} = \frac{g(x)}{x}$$

(b) En déduire le tableau des variations de f sur]0; $+\infty[$.

Le résultat précédent montre que puisque x > 0, le signe de f'(x) est celui du numérateur g(x) étudié à la question 5. de la partie A.

Donc f'(x) > 0 sur l'intervalle [1; α]: f est croissante sur cet intervalle;

f'(x) < 0 sur]0; 1[et sur $]\alpha$; $+\infty$ [: f est décroissante sur ces deux intervalles : $(f(\alpha) \approx 3.75)$



Page 4 sur 5

3. Question BONUS:

Montrer que
$$f(\alpha) = \alpha - 2 + \frac{4}{\alpha}$$

D'après la question A.4, $g(\alpha) = 0$ donc

$$2(\alpha - 1) - \alpha \ln(\alpha) = 0$$

$$\Leftrightarrow \alpha \ln(\alpha) = 2(\alpha - 1)$$

$$f(\alpha) = 3\alpha - \alpha \ln(\alpha) - 2\ln(\alpha)$$

$$= 3\alpha - 2(\alpha - 1) - 2 \times \frac{2(\alpha - 1)}{\alpha}$$

$$= \alpha + 2 - \frac{4\alpha}{\alpha} + \frac{4}{\alpha}$$

$$= \alpha - 2 + \frac{4}{\alpha}$$

Exercice 3 QCM (2 points)

1. Le réel a est définie par $a = \ln(9) + \ln\left(\frac{\sqrt{3}}{2}\right) + \ln\left(\frac{1}{9}\right)$ est égal à :

	(3/	(9)	
a) $1 - \frac{1}{2} \ln(3)$	b) $\frac{1}{2}\ln(3)$	c) $3\ln(3) + \frac{1}{2}$	$d) -\frac{1}{2}\ln(3)$

$$a = \ln(9) + \ln\left(\frac{\sqrt{3}}{3}\right) + \ln\left(\frac{1}{9}\right) = \ln 3^2 + \ln\sqrt{3} - \ln 3 - \ln 9 = 2\ln 3 + \frac{1}{2}\ln 3 - \ln 3 - 2\ln 3 = -\frac{1}{2}\ln 3$$

2. On considère la fonction f définie sur l'intervalle]0; $+\infty[$ par $f(x) = \ln(x^2 + x + 1)$.

Pour tout réel
$$x$$
 de l'intervalle $]0$; $+\infty[$, on a :

a) $f'(x) = \frac{1}{2x+1}$ b) $f'(x) = \frac{1}{x^2+x+1}$ c) $f'(x) = \ln(2x+1)$ d) $f'(x) = \frac{2x+1}{x^2+x+1}$

Posons $u(x) = x^2 + x + 1$ et dans ce cas $f(x) = \ln u(x)$.

On sait que $f'(x) = \frac{u'(x)}{u(x)}$ donc $f'(x) = \frac{2x+1}{x^2+x+1}$.