Dérivation – Fonctions cosinus et sinus

I. Rappels

1) Dérivabilité et fonction dérivée

Définition – Nombre dérivé

f est une fonction définie sur un intervalle I de \mathbb{R} .

Soient a et h deux réels tels que a et a + h appartiennent à I.

On dit que la fonction f est dérivable en a s'il existe un nombre réel l, tel que : $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = l$.

Le réel l est alors appelé le nombre dérivé de f en a et est noté f'(a)

Définition – Fonction dérivable, fonction dérivée

Soit une fonction f définie sur un intervalle I de \mathbb{R} .

La fonction f est dérivable sur I si f est dérivable en tout réel x de I.

La fonction $f': x \mapsto f'(x)$ définie sur I est appelée la fonction dérivée de f sur I.

Remarques:

Une fonction peut être définie en a mais non dérivable en a.
 Par exemple, prenons la fonction racine carrée qui est définie en 0.
 On a:

$$\frac{\sqrt{a+h}-\sqrt{a}}{h} = \frac{\sqrt{h}-\sqrt{0}}{h} = \frac{\sqrt{h}}{h} = \frac{1}{\sqrt{h}}.$$
Or,
$$\lim_{\substack{h \to 0 \\ h > 0}} \frac{1}{\sqrt{h}} = +\infty$$

Donc, la fonction racine carrée n'est pas dérivable en 0.

• Les physiciens expriment une variation à l'aide du symbole Δ .

Ainsi, entre x et x_0 , elle est notée:

$$\Delta x = x - x_0$$
 et $\Delta y = f(x) - f(x_0)$.

On a alors :
$$f'(x_0) = \lim_{x \to x_0} \frac{\Delta y}{\Delta x}$$
.

• On peut noter f'(a) également $\frac{df}{dx}(a)$ qui exprime la différentielle de la fonction f en a par rapport à la variable x. Cela sert à écarter toute ambiguïté s'il y a d'autres variables.

2) Application de la dérivation

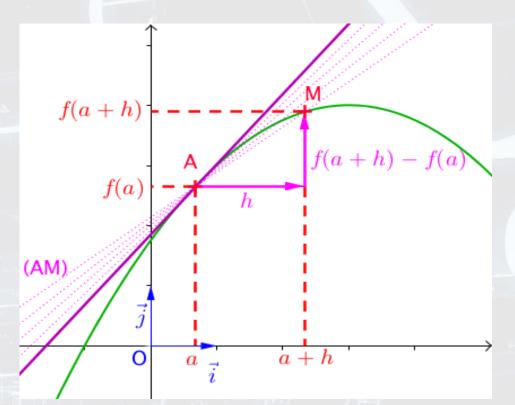
Définition – Tangente en un point à une courbe

Soit une fonction f dérivable en un nombre réel a appartenant à I. Soit C_f la courbe représentative de f dans un repère.

La <u>tangente</u> à la courbe C_f au point A est la droite passant par A de coefficient directeur le nombre dérivé l = f'(a).

Une équation de la tangente à la courbe C_f au point d'abscisse a est :

$$y = f'(a)(x - a) + f(a).$$



Exemple:

On considère la fonction trinôme f définie sur \mathbb{R} par $f(x) = x^2 + 3x - 1$.

On veut déterminer une équation de la tangente à la courbe représentative de f au point A de la courbe d'abscisse 2.

$$\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{(2+h)^2 + 3(2+h) - 1 - 9}{h}$$

$$= \lim_{h \to 0} \frac{h^2 + 7h}{h}$$

$$= \lim_{h \to 0} (h + 7)$$

$$= 7$$

Le coefficient directeur de la tangente est égal à 7.

Donc son équation est de la forme :
$$y = 7(x - 2) + f(2)$$
, soit : $y = 7(x - 2) + 9$
$$y = 7x - 5$$

Une équation de tangente à la courbe représentative de f au point A de la courbe d'abscisse 2 est y = 7x - 5

Propriétés - Du signe de f'(x) aux variations de f

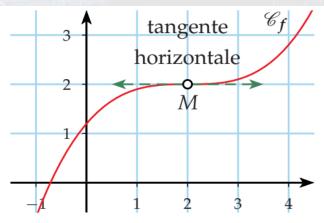
Soit une fonction f définie et dérivable sur un intervalle I de \mathbb{R} .

- Si f' est strictement positive sur I, sauf éventuellement en un nombre fini de points où elle s'annule, alors f est strictement croissante sur I.
- Si f' est strictement négative sur I, sauf éventuellement en un nombre fini de points où elle s'annule, alors f est strictement décroissante sur I.
- Si f' est nulle sur I, alors f est constante sur I.

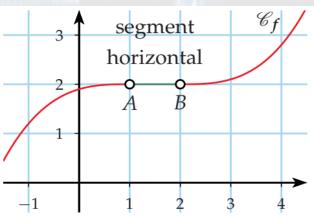
Remarque

« sauf éventuellement en un nombre fini de points où elle s'annule »

signifie que la courbe représentative de f peut admettre des tangentes horizontales mais ne peut avoir à aucun endroit la forme d'un segment parallèle à l'axe des abscisses.



f' est strictement positive sauf en 2 où elle s'annule donc f est strictement croissante sur \mathbb{R} .



f' est strictement positive $sur] - \infty$; $1[\cup]2$; $\infty [$ donc f n' est pas **strictement** croissante $sur \mathbb{R}$.

3) Calcul de dérivées

Propriété - Dérivées des fonctions usuelles

On désigne par D_f l'ensemble de définition de la fonction f.

Toutes les fonctions du tableau ci-dessous sont dérivables sur D_f à l'exception de la fonction racine carrée qui n'est pas dérivable en zéro.

Fonctionf	Ensemble de définition de f	Dérivée f '
$f(x) = a (a \in \mathbb{R})$	\mathbb{R}	f'(x)=0
$f(x) = x^n (n \in \mathbb{N}^*)$	\mathbb{R}	$f'(x) = nx^{n-1}$
$f(x) = \frac{1}{x}$	\mathbb{R}^*	$f'(x) = -\frac{1}{x^2}$
$f(x) = \sqrt{x}$	[0; +∞[$f'(x) = \frac{1}{2\sqrt{x}}$

Exemples

- a) Soit la fonction f définie sur \mathbb{R} par $f(x) = x^6$ alors f est dérivable sur \mathbb{R} et on a pour tout x de \mathbb{R} , $f'(x) = 6x^5$
- b) Soit la fonction f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x^4}$ alors f est dérivable sur $]-\infty$; 0[et sur $]0; +\infty[$ et on a pour tout x de \mathbb{R}^* , $f'(x) = -\frac{4}{x^5}$.

Propriété - Opération sur les fonctions dérivées

Soit un réel k et deux fonctions u et v dérivables sur un intervalle I.

- Les fonctions u + v, ku et uv sont dérivables sur I.
- Les fonctions $\frac{1}{v}$ et $\frac{u}{v}$ sont dérivables sur I sauf là où v s'annule.

Fonction	u + v	ku	uv	$\frac{1}{v}$	$\frac{u}{v}$
Dérivée	u' + v'	ku'	u'v + uv'	$-\frac{v'}{v^2}$	$\frac{u'v - uv'}{v^2}$

Exemples

a)
$$f(x) = (2x^2 - 5x)(3x - 2)$$

b)
$$g(x) = \frac{6x-5}{x^3-2x^2-1}$$

Démonstration de la formule du produit :

Soient deux fonctions u et v dérivables sur un intervalle I alors, pour tout réel $a \in I$ et h tel que $a + h \in I$:

$$u'(a) = \lim_{h \to 0} \frac{u(a+h) - u(a)}{h}$$
 et $v'(a) = \lim_{h \to 0} \frac{v(a+h) - v(a)}{h}$

Posons $w = u \times v$

Par définition du produit de deux fonctions :

$$w(a+h) - w(a) = (uv)(a+h) - (uv)(a)$$

$$= u(a+h) \times v(a+h) - u(a) \times v(a)$$

$$= u(a+h) \times v(a+h) - u(a) \times v(a+h) + u(a) \times v(a+h) - u(a) \times v(a)$$

$$= (u(a+h) - u(a)) \times v(a+h) + u(a) \times (v(a+h) - v(a))$$

On a alors:

$$\frac{w(a+h)-w(a)}{h} = \frac{\left(u(a+h)-u(a)\right)\times v(a+h)+u(a)\times \left(v(a+h)-v(a)\right)}{h}$$
$$= \frac{u(a+h)-u(a)}{h}\times v(a+h)+u(a)\times \frac{v(a+h)-v(a)}{h}$$

Démonstration de la formule du produit :

$$\frac{w(a+h)-w(a)}{h} = \frac{u(a+h)-u(a)}{h} \times v(a+h) + u(a) \times \frac{v(a+h)-v(a)}{h}$$

Par passage à la limite, les fonctions étant continues sur *I*:

$$\lim_{h \to 0} \frac{w(a+h) - w(a)}{h} = \lim_{h \to 0} \left(u'(a) \times v(a+h) + u(a) \times v'(a) \right)$$
$$= u'(a) \times v(a) + u(a) \times v'(a)$$

Ceci prouve que la fonction w est dérivable pour tout réel $a \in I$, elle est donc dérivable sur I et :

$$w' = (uv)' = u'v + uv'$$

A vous de jouer!

Montrer la formule de l'inverse et celle du quotient.

II. Dérivées de fonctions composées

Dans cette partie, u désigne une fonction et I un intervalle.

Propriété - Dérivée de \sqrt{u}

Si u est dérivable et strictement positive sur I, alors \sqrt{u} est dérivable sur I et $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$

Preuve

Soit un réel $a \in I$ et un réel h > 0 tel que a + h soit dans I.

On calcule le taux d'accroissement de \sqrt{u} entre a et a + h.

$$\frac{\sqrt{u(a+h)} - \sqrt{u(a)}}{h} = \frac{u(a+h) - u(a)}{h(\sqrt{u(a+h)} + \sqrt{u(a)})} = \frac{u(a+h) - u(a)}{h} \times \frac{1}{\sqrt{u(a+h)} + \sqrt{u(a)}}$$

Or, la fonction u est dérivable sur I donc $\lim_{h\to 0} \frac{u(a+h)-u(a)}{h} = u'(a)$.

D'où
$$\lim_{h\to 0} \frac{\sqrt{u(a+h)} - \sqrt{u(a)}}{h} = u'(a) \times \frac{1}{2\sqrt{u(a)}} = \frac{u'(a)}{2\sqrt{u(a)}}$$
.

Exemple

$$f(x) = \sqrt{3x^2 + 4x - 1}$$

Propriété – Dérivée de u^n et u^{-n}

Soit $n \in \mathbb{N}^*$. Si u est dérivable sur I alors :

- La fonction u^n est dérivable sur I et $(u^n)' = nu'u^{n-1}$
- La fonction u^{-n} est dérivable sur I sauf là où u s'annule et $(u^{-n})' = -nu'u^{-n-1}$.

Preuve

• On démontre par récurrence. Voici l'initialisation et l'hérédité :

 $(u^1) = u' = 1 \times u'u^{1-1}$. La proposition est donc initialisée au rang 1.

Supposons qu'il existe un entier $k \in \mathbb{N}^*$ tel que la propriété « $(u^k) = ku'u^{k-1}$ » soit vraie.

$$(u^{k+1}) = (u^k u) = (u^k)u + u^k u' = ku'u^{k-1}u + u^k u' = (k+1)u'u^k.$$

La propriété est encore vraie au rang suivant donc elle est héréditaire.

• Si u est dérivable sur I, alors $\frac{1}{u}$ est dérivable sur I sauf là où u s'annule.

$$(u^{-n}) = \left(\frac{1}{u^n}\right) = \left[\left(\frac{1}{u}\right)^n\right] = n\left(\frac{1}{u}\right)\left(\frac{1}{u}\right)^{n-1}$$
 d'après la première propriété.

Ainsi:
$$(u^{-n}) = n\left(-\frac{u'}{u^2}\right)\frac{1}{u^{n-1}} = -\frac{nu'}{u^{n+1}} = -nu'u^{-n-1}$$
.

Exemple

$$f(x) = (2x^2 + 3x - 3)^4$$

Propriété – Dérivée de $x \mapsto u(ax + b)$

Soit deux réels a et b.

Si *u* est dérivable sur *I* alors :

La fonction $f: x \mapsto u(ax + b)$ est dérivable là où $(ax + b) \in I$ et

$$f'(x) = au'(ax + b)$$

Preuve

Soit u dérivable sur I et deux réels a et b tels que $x \in I \Rightarrow (ax + b) \in I$.

- Si a = 0, alors $f: x \mapsto u(b)$ est constante et on a bien $f'(x) = 0 = 0 \times u'(b)$.
- Prenons $a \neq 0$. La fonction u est dérivable sur I donc : pour tous $X \in I$ et H réel tels que $(X + H) \in I$:

$$\lim_{H\to 0} \frac{u(X+H)-u(X)}{H} = u'(X)$$

Posons X = ax + b et H = ah.

Alors, H tend vers 0 vu que h tend vers 0 et que $a \neq 0$. Ainsi :

$$\lim_{h\to 0} \frac{u(ax+b+ah)-u(ax+b)}{ah} = u'(ax+b)$$

soit

$$\lim_{h \to 0} \frac{u(a(x+h)+b) - u(ax+b)}{h} = au'(ax+b)$$

MÉTHODE 1 - Dériver une fonction composée

- 1. On reconnaît le type de composée $(\sqrt{u}, u^n, u^{-n} \text{ ou } x \mapsto u(ax+b))$ et on identifie u.
- 2. On détermine les ensembles de définition et de dérivabilité de la fonction.
- 3. On calcule u'(x) et on applique la formule de dérivation qui convient.

Exemple

Déterminer les ensembles de définition \mathcal{D} et de dérivabilité \mathcal{D}' de f, puis calculer f'(x).

1)
$$f(x) = \sqrt{x^2 - x - 2}$$

2)
$$f(x) = \left(\frac{3x-1}{2x-4}\right)^2$$

3)
$$f(x) = \frac{1}{(\sqrt{x}-1)^3}$$

4) $f(x) = (2x - 3)^5$

$$4) f(x) = (2x - 3)^5$$

Les exemples de formules de dérivation des composées vues précédemment mettent en évidence une expression unifiée de la dérivée de $x \mapsto f(u(x))$. On donne, ci-après, la propriété générale mais sa connaissance n'est pas une capacité attendue.

Propriété (admise)

Soit u une fonction dérivable sur un intervalle I de \mathbb{R} et f une fonction dérivable sur un intervalle J de \mathbb{R} telle que pour tout $x \in I$, $u(x) \in J$.

La fonction $f \circ u$ composée de u suivie de f est dérivable sur I, et pour tout $x \in I$:

$$(f \circ u)'(x) = u'(x) \times (f' \circ u)(x)$$
 ou $[f(u(x))]' = u'(x) \times f'(u(x))$

---- Exercices de la fiche

MÉTHODE 1

Déterminer l'ensemble de dérivabilité \mathcal{D}' de chaque fonction et calculer sa dérivée sur \mathcal{D}' :

- **1)** $f: x \mapsto \sqrt{3x-7}$ **4)** $a: x \mapsto (1-2\sqrt{x})^2$
- **2)** $g: x \mapsto (5x^3 3)^2$ **5)** $b: x \mapsto \sqrt{x^2 1}$

- 3) $h: x \mapsto \frac{1}{(x+6)^3}$ 6) $c: x \mapsto \frac{1}{\sqrt{10-x}}$

12 Soit f une fonction définie sur I par f(x). Justifier que f est dérivable sur I puis calculer f'(x).

1) $f(x) = \frac{5}{3(x-2)^4}$

$$I=]2;+\infty[$$

2) $f(x) = \frac{x^2}{(x+1)^3}$

$$I=]-1;+\infty[$$

 $3) f(x) = \left(\frac{x+2}{x-2}\right)^2$

$$I=]2$$
; $+\infty[$

4) $f(x) = (x-2)^3 + \frac{1}{(2x-1)^3}$ $I = \left[\frac{1}{2}; +\infty\right[$

Soit la fonction f définie sur $[0; +\infty[$ par :

$$f(x) = \frac{2x - \sqrt{x}}{2 + \sqrt{x}}.$$

1) Montrer que f est dérivable sur]0; $+\infty[$ et que :

$$f'(x) = \frac{x + 4\sqrt{x} - 1}{\sqrt{x}\left(2 + \sqrt{x}\right)^2}.$$

- 2) Résoudre l'équation $X^2 + 4X 1 = 0$. En déduire le signe de f'(x).
- 3) Dresser le tableau de variation complet de *f* .
- Soit les fonctions f et g définies sur \mathbb{R} par :

$$f(x) = \sqrt{x^2 + 1} - 2x$$
 et $g(x) = \frac{x}{\sqrt{x^2 + 1}}$.

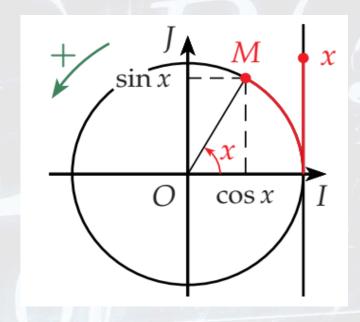
- 1) Montrer que $g'(x) = \frac{1}{(x^2 + 1)\sqrt{x^2 + 1}}$. En déduire le sens de variation de g sur \mathbb{R} .
- 2) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.
- 3) Montrer que f'(x) = g(x) 2. En déduire le signe de f'(x) puis les variations de f.

III. Fonctions cosinus et sinus

1) <u>Définition et rappels</u>

Soit (0; I, J) un repère orthonormé direct. Le point M, image d'un réel x sur le cercle trigonométrique de centre 0, a pour coordonnées $(\cos x; \sin x)$ où $\cos x$ est le cosinus de x et $\sin x$ est le sinus de x.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
cosx	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
sinx	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0



Propriété – Fonction cosinus et sinus

- La fonction cosinus, notée cos, est la fonction définie sur \mathbb{R} par cos: $x \mapsto \cos x$.
- La fonction sinus, notée sin, est la fonction définie sur \mathbb{R} par sin: $x \mapsto \sin x$.

2) Propriétés des fonctions cosinus et sinus

<u>Définition</u> - Fonction périodique

Soit f une fonction définie sur \mathbb{R} et un réel T.

f est périodique de période T ou est T-périodique si, pour tout $x \in \mathbb{R}$, f(x+T) = f(x).

<u>Définition</u> - Fonctions paire et impaire

Soit une fonction f définie sur un ensemble \mathcal{D}_f symétrique par rapport à 0.

- Une fonction f est paire si, pour tout $x \in \mathcal{D}_f$, f(-x) = f(x).
- Une fonction f est impaire si, pour tout $x \in \mathcal{D}_f$, f(-x) = -f(x).

<u>Définition</u> - Fonctions paire et impaire

- Les fonctions cos et sin sont 2π -périodiques.
- La fonction cos est paire et la fonction sin est impaire

Définition

- Les fonctions cos et sin sont 2π -périodiques.
- La fonction cos est paire et la fonction sin est impaire

Preuve

Pour tout réel x, on a en effet :

- $cos(x + 2\pi) = cosx$ et $sin(x + 2\pi) = sinx$.
- cos(-x) = cosx et sin(-x) = -sinx.

Remarque

- Dans un repère, les courbes représentatives de cos et sin « se répètent » tous les 2π .
- Dans un repère orthogonal, la courbe représentative de cos est symétrique par rapport à l'axe des ordonnées et celle de sin est symétrique par rapport à l'origine du repère.

3) <u>Dérivabilité et variations</u>

Propriété (admise) - Dérivées des fonctions cos et sin

Les fonctions cos et sin sont dérivables et continues sur \mathbb{R} .

- $\cos' = -\sin$
- $\sin' = \cos$

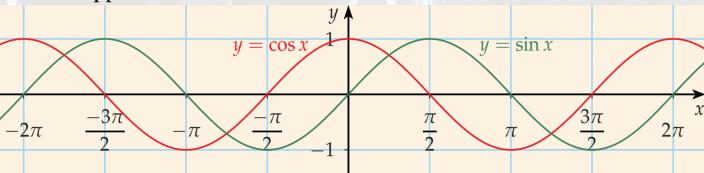
Propriété

Les variations des fonctions cos et sin sur $[0; \pi]$ sont données par les tableaux ci-contre.

x	0	$\frac{\pi}{2}$	π
	0	2	, (
	1	÷	
cos		0	
			-1

x	0	$\frac{\pi}{2}$	π
sin	0	1	0

Les courbes représentatives de cos et sin sont appelées des sinusoïdes.



MÉTHODE 2 – Dériver une fonction formée de cos et sin

En général, ce type de fonction définie est dérivable sur \mathbb{R} . Si ce n'est pas le cas, on établira d'abord les ensembles de définition et de dérivabilité (Méthode 1).

Exemple

Calculer f'(x). L'écrire sous une forme facilitant l'étude de son signe.

$$1) \ f(x) = \sin\left(3x - \frac{\pi}{4}\right)$$

$$2) f(x) = \cos^2 x$$

$$3) f(x) = \sin x (1 + \cos x)$$

Propriété

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0 \qquad \text{et} \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1$$

Preuve:

Les fonctions cos et sin sont dérivables sur $\mathbb R$ donc en particulier en 0. Ainsi :

•
$$\lim_{x \to 0} \frac{\cos x - 1}{x} = \lim_{x \to 0} \frac{\cos x - \cos 0}{x - 0} = \cos'(0) = -\sin 0 = 0.$$

•
$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin x - \sin 0}{x - 0} = \sin'(0) = \cos 0 = 1.$$

MÉTHODE 3 – Étudier une fonction trigonométrique

Il arrive fréquemment qu'une fonction trigonométrique soit périodique et paire ou impaire. Cela amène alors souvent à étudier d'abord la fonction sur un intervalle restreint avant de l'étudier sur un ensemble plus grand.

Exemple

Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{3\sin x}{2 + \cos x}$.

- 1. Calculer f'(x). Étudier son signe sur $[0; \pi]$. En déduire les variations de f sur $[0; \pi]$.
- 2. Calculer f(-x). En déduire les variations de f sur $[-\pi; \pi]$.
- 3. Montrer que f est 2π -périodique.
- 4. Tracer la courbe représentative C de f sur $[0; \pi]$ puis sur $[-4\pi; 4\pi]$.