Durée: 4 heures

Terminale S3

Les calculatrices sont autorisées.

Le sujet est composé de quatre exercices indépendants.

La qualité et la précision de la rédaction seront prises en compte dans l'appréciation des copies.

Exercice 1 (5 points)

Les parties A et B peuvent être traitées de façon indépendante.

Partie A

On rappelle que la partie réelle d'un nombre complexe z est notée $\Re(z)$.

- 1. Déterminer l'écriture exponentielle du nombre complexe u = 1 i.
- 2. Déterminer, pour tout réel θ , la forme algébrique et l'écriture exponentielle du nombre complexe $e^{i\theta}(1-i)$.
- 3. Déduire des questions précédentes que, pour tout réel θ , $\cos(\theta) + \sin(\theta) = \sqrt{2}\cos\left(\theta \frac{\pi}{4}\right)$.

Partie B

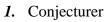
Dans cette partie, on admet que, pour tout réel θ , $\cos(\theta) + \sin(\theta) = \sqrt{2}\cos\left(\theta - \frac{\pi}{4}\right)$.

On considère les fonctions f et g définies sur l'intervalle $[0;+\infty[$ par :

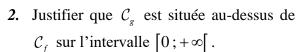
$$f(x) = e^{-x} \cos(x)$$
 et $g(x) = e^{-x}$.

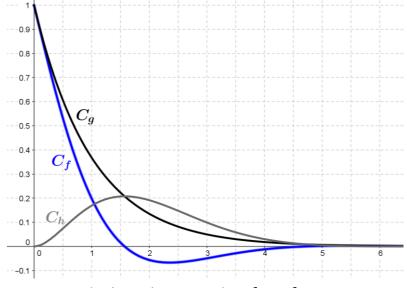
On définit la fonction h sur $[0; +\infty[$ par h(x) = g(x) - f(x).

Les représentations graphiques C_f , C_g et C_h des fonctions f, g et h sont données ci-dessous dans un repère orthogonal.



- **a.** les limites des fonctions f et g en $+\infty$;
- **b.** la position relative de C_f par rapport à C_g ;
- c. la valeur de l'abscisse x pour laquelle l'écart entre les deux courbes C_f et C_g est maximal.





- 3. Démontrer que la droite d'équation y = 0 est asymptote horizontale aux courbes C_f et C_g .
- **4.** a. On note h' la fonction dérivée de la fonction h sur l'intervalle $[0; +\infty[$.

Démontrer que, pour tout x de l'intervalle $\left[0; +\infty\right[, h'(x) = e^{-x} \left[\sqrt{2}\cos\left(x - \frac{\pi}{4}\right) - 1\right].$

b. Justifier que, sur l'intervalle $\left[0; \frac{\pi}{2}\right]$, $\sqrt{2}\cos\left(x - \frac{\pi}{4}\right) - 1 \ge 0$ et que, sur l'intervalle $\left[\frac{\pi}{2}; 2\pi\right]$,

$$\sqrt{2}\cos\left(x-\frac{\pi}{4}\right)-1\leq 0.$$

c. En déduire le tableau de variation de la fonction h sur l'intervalle $[0; 2\pi]$.

Exercice 2 (5 points)

Dans un pays de population constante égale à 120 millions, les habitants vivent soit en zone rurale, soit en ville. Les mouvements de population peuvent être modélisés de la façon suivante :

- en 2010, la population compte 90 millions de ruraux et 30 millions de citadins ;
- chaque année, 10 % des ruraux émigrent à la ville ;
- chaque année, 5 % des citadins émigrent en zone rurale.

Pour tout entier nature n, on note:

- u_n la population en zone rurale, en l'année 2010+n, exprimée en millions d'habitants ;
- v_n la population en ville, en l'année 2010+n, exprimée en millions d'habitants.

On a donc $u_0 = 90$ et $v_0 = 30$.

Partie A

- 1. Traduire le fait que la population totale est constante par une relation liant u_n et v_n .
- 2. On utilise un tableur pour visualiser l'évolution des suites (u_n) et (v_n) . Quelles formules peut-on saisir dans les cellules B3 et C3 qui, recopiées vers le bas, permettent d'obtenir la feuille de calcul ci-dessous :

	A	В	С
1	n	Population en zone rurale	Population en ville
2	0	90	30
3	1	82,5	37,5
4	2	76,125	43,875
5	3	70,706	49,294
6	4	66,100	53,900
7	5	62,185	57.815
8	6	58,857	61,143
9	7	56,029	63,971
10	8	53,625	66,375
11	9	51,581	68,419
12	10	49,844	70,156
13	11	48,367	71,633
14	12	47,112	72,888
15	13	46,045	73,955
16	14	45,138	74,862
17	15	44,368	75,632
18	16	43,713	76,287
19	17	43,156	76,844
20	18	42,682	77,318
21	19	42,280	77,720
22	20	41,938	78,062
	•••		
59	57	40,005	79,995
60	58	40,004	79,996
61	59	40,003	79,997
62	60	40,003	79,997
63	61	40,002	79,998

3. Quelles conjectures peut-on faire concernant l'évolution à long terme de cette population ?

Partie B

On admet dans cette partie que, pour tout entier naturel n, $u_{n+1} = 0.85u_n + 6$.

- 1. (a) Démontrer par récurrence que la suite (u_n) est décroissante.
 - (b) On admet que u_n est positif pour tout entier naturel n.

Que peut-on en déduire quant à la suite (u_n) ?

- 2. On considère la suite (w_n) , définie par : $w_n = u_n 40$, pour tout $n \ge 0$.
 - (a) Démontrer que (w_n) est une suite géométrique de raison 0,85.
 - (b) En déduire l'expression de w_n puis de u_n en fonction de n.
 - (c) Déterminer l'expression de v_n en fonction de n.
- 3. Valider ou invalider les conjectures effectuées à la question 3. de la partie A.
- 4. On considère l'algorithme suivant :

Entrée : n et u sont des nombres

Initialisation: n prend la valeur 0

u prend la valeur 90

Traitement: Tant que $u \ge 120 - u$ faire

n prend la valeur n+1

u prend la valeur $0.85 \times u + 6$

Fin Tant que

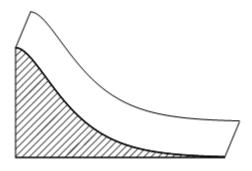
Sortie: Afficher n

- (a) Que fait cet algorithme?
- (b) Quelle valeur affiche-t-il?

Exercice 3 (5 points)

Le directeur d'un zoo souhaite faire construire un toboggan pour les pandas. Il réalise le schéma suivant de ce toboggan en perspective cavalière.

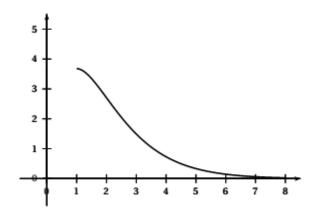
Voici ce schéma:



Partie A: Modélisation

Le profil de ce toboggan est modélisé par la courbe C représentant la fonction f définie sur l'intervalle [1;8] par $f(x) = (ax+b)e^{-x}$ où a et b sont deux entiers naturels.

La courbe C est tracée ci-contre dans un repère orthonormé dont l'unité est le mètre.



- 1. On souhaite que la tangente à la courbe C en son point d'abscisse 1 soit horizontale.
 - Déterminer la valeur de l'entier b.
- 2. On souhaite que le haut du toboggan soit situé entre 3,5 et 4 mètres de haut. Déterminer la valeur de l'entier a.

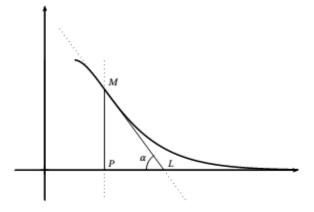
Partie B: Une contrainte à vérifier

On admet dans la suite que la fonction f introduite dans la partie A est définie pour tout réel $x \in [1; 8]$ par

$$f(x) = 10xe^{-x}.$$

Des raisons de sécurité imposent de limiter la pente maximale du toboggan. On considère un point M de la courbe C, d'abscisse différente de 1. On appelle α l'angle aigu formé par la tangente en M à C et l'axe des abscisses. La figure suivante illustre la situation.

Les contraintes imposent que l'angle α soit inférieur à 55 degrés.



- 1. On note f' la fonction dérivée de la fonction f sur l'intervalle [1;8]. On admet que, pour tout x de l'intervalle [1;8], $f'(x) = 10(1-x)e^{-x}$.
 - Étudier les variations de la fonction f' sur l'intervalle [1;8].
- 2. Soit b un réel de l'intervalle [1;8] et soit M le point d'abscisse b de la courbe C. Justifier que $\tan \alpha = |f'(b)|$.
- 3. Le toboggan est-il conforme aux contraintes imposées ?

Exercice 4 (5 points)

- 1. Résoudre dans l'ensemble \mathbb{C} des nombres complexes l'équation (E) d'inconnue $z: z^2 8z + 64 = 0$. Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.
- 2. On considère les points A, B et C d'affixes respectives $a = 4 + 4i\sqrt{3}$, $b = 4 4i\sqrt{3}$ et c = 8i.
 - *a.* Calculer le module et un argument du nombre *a*.
 - **b.** Donner la forme exponentielle des nombres a et b.
 - c. Montrer que les points A, B et C sont sur un même cercle de centre O dont on déterminera le rayon.
 - **d.** Placer les points A, B et C dans le repère $(O; \vec{u}, \vec{v})$.

Pour la suite de l'exercice, on pourra s'aider de la figure de la question 2. d. complétée au fur et à mesure de l'avancement des questions.

- 3. On considère les points A', B' et C' d'affixes respectives $a' = ae^{i\frac{\pi}{3}}$, $b' = be^{i\frac{\pi}{3}}$ et $b' = be^{i\frac{\pi}{3}}$.
 - **a.** Montrer que b' = 8.
 - **b.** Calculer le module et un argument du nombre a'.

Pour la suite on admet que $a' = -4 + 4i\sqrt{3}$ et $c' = -4\sqrt{3} + 4i$.

- **4.** On admet que si M et N sont deux points du plan d'affixes respectives m et n alors le milieu I du segment [MN] a pour affixe $\frac{m+n}{2}$ et la longueur MN est égale à |n-m|.
 - a. On note r, s et t les affixes des milieux respectifs R, S et T des segments [A'B], [B'C] et [C'A]. Calculer r et s. On admet que $t = 2 2\sqrt{3} + i\left(2 + 2\sqrt{3}\right)$.
 - b. Quelle conjecture peut-on faire quant à la nature du triangle RST ? Justifier ce résultat.