Terminale S3	Devoir surveillé de mathématiques Durée 2h	Lundi 24 avril
--------------	---	----------------

Exercice 1 (10 points) Pondichéry Avril 2016

On souhaite stériliser une boîte de conserve.

Pour cela, on la prend à la température ambiante $T_0 = 25^{\circ}$ C et on la place dans un four à température constante $T_F = 100$ C.

La stérilisation débute dès lors que la température de la boîte est supérieure à 85°C.

Les deux parties de cet exercice sont indépendantes

Partie A: Modélisation discrète

Pour n entier naturel, on note T_n la température en degré Celsius de la boîte au bout de n minutes. On a donc $T_0 = 25$.

Pour n non nul, la valeur T_n est calculée puis affichée par l'algorithme suivant :

Initialisation:	T prend la valeur 25
Traitement:	Demander la valeur de <i>n</i>
	Pour i allant de 1 à n faire
	T prend la valeur $0,85 \times T + 15$
	Fin Pour
Sortie:	Afficher T

- 1. Déterminer la température de la boîte de conserve au bout de 3 minutes. Arrondir à l'unité.
- 2. Démontrer que, pour tout entier naturel n, on a $T_n = 100 75 \times 0.85^n$.
- 3. Au bout de combien de minutes la stérilisation débute-elle ?

Partie B: Modélisation continue

Dans cette partie, t désigne un réel positif.

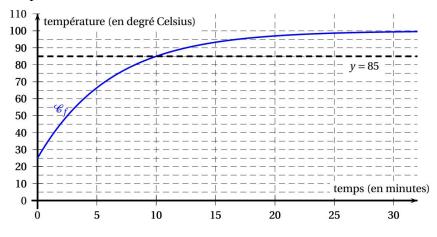
On suppose désormais qu'à l'instant t (exprimé en minutes), la température de la boîte est donnée par f(t) (exprimée en degré Celsius) avec :

$$f(t) = 100 - 75e^{-\frac{\ln 5}{10}t}.$$

- 1. (a) Étudier le sens de variations de f sur $[0; +\infty[$.
 - (b) Justifier que si $t \ge 10$ alors $f(t) \ge 85$.
- 2. Soit θ un réel supérieur ou égal à 10.

On note $\mathcal{A}(\theta)$ le domaine délimité par les droites d'équation t = 10, $t = \theta$, y = 85 et la courbe représentative \mathcal{C}_f de f.

On considère que la stérilisation est finie au bout d'un temps θ , si l'aire, exprimée en unité d'aire du domaine $\mathcal{A}(\theta)$ est supérieure à 80.



Page 1 sur 3

- (a) Justifier, à l'aide du graphique donné ci-dessus, que l'on a $\mathcal{A}(25) > 80$.
- (b) Justifier que, pour $\theta \ge 10$, on a $\mathcal{A}(\theta) = 15(\theta 10) 75 \int_{10}^{\theta} e^{-\frac{\ln 5}{10}t} dt$.
- (c) La stérilisation est-elle finie au bout de 20 minutes?

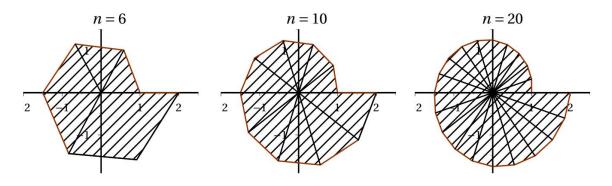
Exercice 2 (10 points) Centres Étrangers Juin 2016

On veut modéliser dans le plan la coquille d'un nautile à l'aide d'une ligne brisée en forme de spirale. On s'intéresse à l'aire délimitée par cette ligne.

On munit le plan d'un repère orthonormal direct $(0; \vec{u}; \vec{v})$.

Soit n un entier supérieur ou égal à 2. Pour tout entier k allant de 0 à n, on définit les nombres complexes $z_k = \left(1 + \frac{k}{n}\right) e^{i\frac{2k\pi}{n}}$ et on note M_k le point d'affixe z_k .

Dans ce modèle, le pourtour du nautile est la ligne brisée reliant tous les points M_k avec $0 \le k \le n$. Par exemple, pour les entiers n = 6, n = 10 et n = 20, on obtient les figures ci-dessous.



Partie A : Ligne brisée formée à partir de sept points

Dans cette partie, on suppose que n = 6. Ainsi, pour $0 \le k \le 6$, on a $z_k = \left(1 + \frac{k}{6}\right) e^{i\frac{2k\pi}{6}}$.

- 1. Déterminer la forme algébrique de z_1 .
- 2. Vérifier que z_0 et z_6 sont des entiers que l'on déterminera.
- 3. Calculer la longueur de la hauteur issue de M_1 dans le triangle OM_0M_1 puis établir que l'aire de ce triangle est égale à $\frac{7\sqrt{3}}{24}$.

Partie B : Ligne brisée formée à partir de n + 1 points

Dans cette partie, n est un entier supérieur ou égal à 2.

- 1. Pour tout entier k tel que $0 \le k \le n$, déterminer la longueur OM_k .
- 2. Pour k entier tel que $0 \le k \le n-1$, déterminer une mesure des angles $(\vec{u}; \overrightarrow{OM_k})$ et $(\vec{u}; \overrightarrow{OM_{k+1}})$. En déduire une mesure de l'angle $(\overrightarrow{OM_k}; \overrightarrow{OM_{k+1}})$.
- 3. Pour k entier tel que $0 \le k \le n-1$, démontrer que la longueur de la hauteur issue de M_{k+1} dans le triangle OM_kM_{k+1} est égale à $\left(1 + \frac{k+1}{n}\right) \times \sin\left(\frac{2\pi}{n}\right)$.
- 4. On admet que l'aire du triangle OM_kM_{k+1} est égale à $a_k = \frac{1}{2}\sin\left(\frac{2\pi}{n}\right) \times \left(1 + \frac{k}{n}\right)\left(1 + \frac{k+1}{n}\right)$ et que l'aire totale délimitée par la ligne brisée est égale à $A_n = a_0 + a_1 + \dots + a_{n-1}$. L'algorithme suivant permet de calculer l'aire A_n lorsqu'on entre l'entier n:

VARIABLES A est un nombre réel k est un entier n est un entier

TRAITEMENT Lire la valeur de n A prend la valeur 0Pour k allant de 0 à n-1 $A \operatorname{prend} \operatorname{la} \operatorname{valeur} A + \frac{1}{2} \sin \left(\frac{2\pi}{n} \right) \times \left(1 + \frac{k}{n} \right) \left(1 + \frac{k+1}{n} \right)$ Fin Pour
SORTIE Afficher A

On entre dans l'algorithme n = 10

Recopier et compléter le tableau ci-dessous qui illustre le fonctionnement de l'algorithme.

k	0	1	2	3	4	5	6	7	8	9
Α	0,323	0,711	1,170	1,705	2,322	3,027	3,826	4,726		

5. On admet que $A_2 = 0$ et que la suite (A_n) converge et que $\lim_{n \to +\infty} A_n = \frac{7\pi}{3} \approx 7,3$.

Recopier et compléter les lignes L6 et L13 de l'algorithme ci-après qui permet de déterminer le plus petit entier n tel que $A_n \ge 7.2$. On ne demande pas de déterminer n.

	· · · · · · · · · · · · · · · · · · ·)= on no welliam pur de determine
L1	VARIABLES:	A est un nombre réel
L2		k est un entier
L3		n est un entier
L4	TRAITEMENT:	n prend la valeur 2
L5		A prend la valeur 0
L6		Tant que
L7		n prend la valeur $n+1$
L8		A prend la valeur 0
L9		Pour k allant de 0 à $n-1$
L10		A prend la valeur
		$A + \frac{1}{2}\sin\left(\frac{2\pi}{n}\right) \times \left(1 + \frac{k}{n}\right)\left(1 + \frac{k+1}{n}\right)$
		Fin Pour
L12		Fin Tant que

Afficher ...

Question BONUS

Démontrer la propriété suivante :

L13

Dans un repère orthonormal, la distance du point A de coordonnées (α ; β ; γ) au plan

P d'équation
$$ax + by + cz + d = 0$$
 est égale à
$$\frac{|a\alpha + b\beta + c\gamma + d|}{\sqrt{a^2 + b^2 + c^2}}$$

SORTIE:

Indication : A' (α '; β '; γ ') le projeté orthogonal du point A sur le plan P

