Durée: 4 heures.

SPECIALITE

Les calculatrices sont autorisées.

Le sujet est composé de quatre exercices indépendants. La qualité et la précision de la rédaction seront prises en compte dans l'appréciation des copies.

Exercice 1 (7 points)

Soit la fonction f définie sur $\mathbb{R} \setminus \{-1; 1\}$ par :

$$f(x) = \frac{x^3 + 2x^2}{x^2 - 1}$$

On donne en annexe sa courbe représentative incomplète dans le plan muni d'un repère orthogonal. On note \mathcal{C}_f la courbe représentative de f.

PARTIE A : Étude d'une fonction auxiliaire

Soit la fonction g définie sur \mathbb{R} par :

$$a(x) = x^3 - 3x - 4$$

- 1. Étudier les variations de la fonction g et déterminer les limites de g en + et $-\infty$. En déduire le tableau des variations de g.
- 2. Démontrer que l'équation g(x) = 0 admet une unique solution α dans \mathbb{R} localisée dans l'intervalle [1; 3].

Déterminer une valeur approchée à 10^{-3} près de α .

3. Étudier le signe de g sur \mathbb{R} .

PARTIE B : Étude de la fonction f

- 1. Déterminer les limites de la fonction f aux bornes de son domaine de définition. Quelles interprétations graphiques peut-on faire de ces résultats ?
- **2.** Démontrer que pour tout $x \in \mathbb{R} \setminus \{-1; 1\}$:

$$f'(x) = \frac{xg(x)}{(x^2 - 1)^2}$$

- 3. En déduire le signe de f' puis le tableau de variation de la fonction f.
- 4. Soit M le point de C_f d'abscisse x et N le point de même abscisse que M appartenant à la droite D d'équation y = x + 2.
 - a) Montrer que $MN = h(x) = \left| \frac{x+2}{x^2-1} \right|$.
 - **b**) En déduire les limites à l'infini de la fonction h.
 - c) Quelle interprétation peut-on faire de ces résultats.
- 5. Sur le graphique donné en annexe, compléter la courbe C_f , tracer la droite D ainsi que les asymptotes éventuelles.

Exercice 2 de Spécialité (5 points)

- 1. a. Déterminer suivant les valeurs de l'entier naturel non nul n le reste dans la division euclidienne par 9 de 7^n .
 - **b.** Démontrer alors que $(2005)^{2005} \equiv 7 [9]$.
- 2. a. Démontrer que pour tout entier naturel non nul $n:(10)^n \equiv 1$ [9].
 - b. On désigne par N un entier naturel écrit en base dix, on appelle S la somme de ses chiffres.

Démontrer la relation suivante : $N \equiv S$ [9].

- c. En déduire que N est divisible par 9 si et seulement si S est divisible par 9.
- 3. On suppose que $A = (2005)^{2005}$; on désigne par :
 - B la somme des chiffres de A;
 - C la somme des chiffres de B;
 - − D la somme des chiffres de C.
 - a. Démontrer la relation suivante : $A \equiv D$ [9].
 - **b.** Sachant que 2005 < 10 000, démontrer que *A* s'écrit en numération décimale avec au plus 8020 chiffres.

En déduire que B < 72 180.

- c. Démontrer que $C \le 45$.
- d. En étudiant la liste des entiers inférieurs à 45, déterminer un majorant de D plus petit que 15. Démontrer que D = 7.

Exercice 3 (3 points)

Chaque jour Bill doit décider s'il achète du pain ou non.

- S'il a acheté du pain un jour, la probabilité qu'il en achète le lendemain est 0,3 (parce qu'il lui en reste parfois du jour précédent ou qu'il n'en a simplement pas envie ce jour-là).
- S'il n'a pas acheté de pain un jour, la probabilité qu'il en achète le lendemain est 0,8.

Pour tout entier $n \in \mathbb{N}^*$, on appelle A_n l'évènement « Bill achète du pain le $n^{\text{ième}}$ jour » et on note $p_n = P(A_n)$.

Aujourd'hui (le 1^{er} jour), Bill a acheté du pain, ainsi $p_1 = 1$.

- 1. Calculer p_2 et p_3 .
- 2. Représenter la situation par un arbre sur lequel figurent les évènements A_n , $\overline{A_n}$, A_{n+1} et $\overline{A_{n+1}}$.
- 3. Montrer que $p_{n+1} = 0.8 0.5p_n$.
- **4.** Montrer par récurrence que $p_n = \frac{7}{15} \left(-\frac{1}{2} \right)^{n-1} + \frac{8}{15}$ pour tout $n \in \mathbb{N}^*$.
- 5. a. En déduire $\lim_{n\to+\infty} p_n$.
 - **b.** Interpréter concrètement le résultat de la question précédente.

Exercice 4 (3 points)

Pour tout nombre complexe, z, on pose

$$f(z) = z^4 - 10z^3 + 38z^2 - 90z + 261$$

- 1. Démontrer que si z est solution de l'équation f(z) = 0, alors son conjugué \bar{z} l'est aussi.
- 2. Soit $b \in \mathbb{R}$, exprimer en fonction de b les parties réelle et imaginaire de f(bi).
- 3. En déduire que l'équation f(z) = 0 admet deux solutions imaginaires pures.
- 4. Démontrer qu'il existe deux nombres réels α et β que l'on déterminera, tels que pour tout nombre complexe z on ait :

$$f(z) = (z^2 + 9)(z^2 + \alpha z + \beta)$$

5. Résoudre alors dans \mathbb{C} l'équation f(z) = 0.

Exercice 5 (2 points)

1. On considère l'algorithme suivant :

VARIABLES	a, b sont deux nombres réels tels que $a < bx$ est un nombre réel f est une fonction définie sur l'intervalle $[a; b]$
TRAITEMENT	Lire a et b Tant que $b-a>0,3$ x prend la valeur $\frac{a+b}{2}$ Si $f(x)f(a)>0$, alors a prend la valeur x sinon b prend la valeur x Fin Si Fin Tant que Afficher $\frac{a+b}{2}$

Dire si l'affirmation suivante est vraie ou fausse en justifiant votre choix.

Si l'on entre a = 1, b = 2 et $f(x) = x^2 - 3$, alors l'algorithme affiche en sortie le nombre 1,6875.

2. Pour tout entier naturel n, on pose $a_{n+1} = \frac{3}{4}a_n + 330$ et $a_0 = 800$ et on donne l'algorithme suivant.

Variables	n est un entier naturel
	a est un réel
Initialisation	Affecter à <i>n</i> la valeur
	Affecter à a la valeur
Traitement	Tant que $a \leq \dots$, faire :
	Affecter à la valeur
	Affecter à la valeur
	Fin Tant que
Sortie	Afficher

- a. Recopier et compléter l'algorithme ci-dessus pour qu'il détermine la plus petite valeur de n à partir de laquelle a_n est strictement supérieur à 1200.
- b. Déterminer la valeur de n.

Annexe à compléter et à rendre avec la copie

Nom:.....

Prénom:.....

Exercice 1

