

I. Module et argument d'un nombre complexe

1. Définition géométrique

Définition

Soit z un complexe. M (ou \vec{w}) un point (ou un vecteur) d'affixe z.

- On appelle **module** de z la distance OM (ou la norme $||\vec{w}||$). Le module de z est noté |z|.
- Si $z \neq 0$, on appelle **argument** de z <u>une</u> mesure en radians de l'angle $(\vec{u}, \overrightarrow{OM})$ (ou (\vec{u}, \vec{w})). Un argument de z est noté $\arg(z)$.
- Le complexe nul n'a pas d'argument et a pour module 0.

Remarque:

arg(z) peut prendre une infinité de valeurs différentes :

si θ est une mesure de arg(z) alors $\theta + k2\pi$ est une autre mesure de arg(z) pour $k \in \mathbb{Z}$.

On notera : $arg(z) = \theta$ [2 π] et on dit que l'argument de z vaut θ « modulo 2 π » ou « à 2 π près ».

Exemples:

•
$$|i| = OV = 1$$
 et $arg(i) = (\overrightarrow{u}, \overrightarrow{OV}) = \frac{\pi}{2}$.

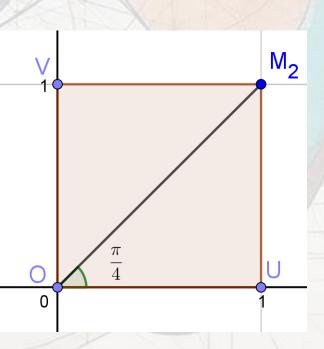
• Soit M_1 d'affixe -4 on a; $|-4| = OM_1 = 4$ et $arg(-4) = (\vec{u}, \overrightarrow{OM_1}) = \pi$.

• Soit M_2 d'affixe 1 + i on a :

$$|1 + i| = OM_2 = \sqrt{1^2 + 1^2} = \sqrt{2}$$
 d'après la formule des distances

$$arg(1+i) = (\overrightarrow{u}, \widehat{OM_2}) = \frac{\pi}{4}$$

la diagonale du carré OUM_2V étant la bissectrice de $(\widehat{\vec{u}}, \widehat{\vec{v}})$.



Méthode 1 - Déterminer un ensemble de points

Exercice d'application:

Déterminer dans le repère orthonormé $(0; \vec{u}, \vec{v})$ l'ensemble des points M d'affixe z tels que :

1)
$$|z| = 3$$

2)
$$\arg(z) = -\frac{\pi}{3} [2\pi]$$

Correction

1)
$$|z| = 3 \Leftrightarrow OM = 3$$

Donc l'ensemble des points M tel que |z| = 3 est un cercle de centre O et de rayon 3.

2)
$$\arg(z) = -\frac{\pi}{3} \quad [2\pi] \Leftrightarrow (\widehat{u}, \widehat{OM}) = -\frac{\pi}{3} \quad [2\pi]$$

Donc l'ensemble des points M tel que $\arg(z) = -\frac{\pi}{3}$ [2π] est une demi-droite d'origine 0, privé de 0, de vecteur directeur $\overrightarrow{u_1}$ tel que $(\overrightarrow{u}, \overrightarrow{u_1}) = -\frac{\pi}{3}$ [2π].

60

Dans le plan complexe représenter, dans chacun des cas suivants, les points *M* dont les affixes *z* remplissent la condition donnée :

1)
$$arg(z) = \frac{\pi}{3}$$

2)
$$|z| = 5$$

3)
$$|z| = 3$$
 et $arg(z) = \pm \pi$

4)
$$arg(z) = -\pi$$

2. Calcul algébrique du module et d'un argument

Théorème

Soit z = a + ib un complexe écrit sous forme algébrique.

•
$$|z| = \sqrt{z \times \bar{z}} = \sqrt{a^2 + b^2}$$

• Si $z \neq 0$ alors $\theta = \arg(z)$ peut être déterminé par :

$$\begin{cases} \cos(\theta) &= \frac{a}{|z|} \\ \sin(\theta) &= \frac{b}{|z|} \end{cases}$$

Méthode 2 - Déterminer le module et un argument d'un nombre complexe

Exercice d'application

Déterminer le module et un argument du complexe $z = -1 + i\sqrt{3}$.

Correction

1) On calcule d'abord le module :
$$|z| = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2$$
.

2) On cherche donc
$$\theta = \arg(z)$$
 tel que
$$\begin{cases} \cos(\theta) &= \frac{-1}{2} \\ \sin(\theta) &= \left(\frac{\sqrt{3}}{2}\right) \end{cases}$$

$$\cos(\theta) = \frac{-1}{2} \Leftrightarrow \cos(\theta) = \cos\left(\frac{2\pi}{3}\right) \Leftrightarrow \begin{cases} \theta = \frac{2\pi}{3}[2\pi] \\ \text{ou} \\ \theta = -\frac{2\pi}{3}[2\pi] \end{cases}$$

$$\text{Or } \sin(\theta) > 0 \text{ donc } \arg(z) = \theta = \frac{2\pi}{3}[2\pi].$$

Déterminer le module et un argument des nombres complexes suivants:

1)
$$z_1 = 7$$

2)
$$z_2 = 2i$$

3)
$$z_3 = \frac{-1+i}{3}$$

4) $z_4 = \sqrt{3}+i$

4)
$$z_4 = \sqrt{3} + i$$

Correction

1)
$$|z_1| = 7$$
 et $arg(z_1) = 0$

1)
$$|z_1| = 7$$
 et $arg(z_1) = 0$.
2) $|z_2| = 2$ et $arg(z_2) = \frac{\pi}{2}$

3)
$$|z_3| = \frac{\sqrt{2}}{3}$$
 et $\arg(z_3) = \frac{3\pi}{4}$

4)
$$|z_4| = 2\frac{\sqrt{2}}{3}$$
 et $\arg(z_3) = \frac{\pi}{6}$

3. Égalité de deux nombres complexes par module et argument

Théorème

Deux nombres complexes non nuls sont égaux si et seulement si ils ont même module et même argument.

Preuve

La preuve résulte directement des formules précédentes.

Remarque:

- $|z| = 0 \Leftrightarrow z = 0$.
- $z \in \mathbb{R} \iff \arg(z) = 0$ ou $\pi [2\pi]$ ou z = 0.
- z est un imaginaire pur \Leftrightarrow $\arg(z) = \frac{\pi}{2} \ [2\pi]$ ou $z = -\frac{\pi}{2} \ [2\pi]$.
- Attention, pour l'égalité des arguments, il faut la penser à 2π près.

II. Forme trigonométrique d'un nombre complexe

1) <u>Définition</u>

Définition

Tout nombre complexe non nul peut s'écrire sous la forme

$$z = r(\cos(\theta) + i\sin(\theta))$$
 avec $r = |z|$ et $\theta = \arg(z) [2\pi]$.

Cette forme s'appelle forme trigonométrique de z.

Remarques

- 1) Dans l'écriture sous forme trigonométrique, on peut remplacer θ par n'importe quelle valeur $\theta + k2\pi$, k entier relatif.
- 2) ATTENTION dans l'écriture $z = r(\cos(\theta) + i\sin(\theta))$ il est crucial d'avoir r > 0. Par exemple : $z = -2\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$ n'est pas une forme trigonométrique car -2 n'est pas strictement positif.

2) Passage d'une forme à l'autre

Théorème

Soit z un complexe non nul. $z = a + ib = r(\cos(\theta) + i\sin(\theta))$

$$\begin{cases} |z| &= \sqrt{a^2 + b^2} \\ \cos(\theta) &= \frac{a}{|z|} \\ \sin(\theta) &= \frac{b}{|z|} \end{cases} \Leftrightarrow \begin{cases} a &= r\cos(\theta) \\ b &= r\sin(\theta) \end{cases}$$

Remarque

Pour déterminer la forme trigonométrique $z = r(\cos(\theta) + i\sin(\theta))$ d'un complexe, on reprend la méthode 2 pour la détermination de r et de θ .

73 Donner la forme trigonométrique des nombres complexes suivants :

4)
$$i + \sqrt{3}$$

7)
$$\frac{1}{2} + \frac{i}{2}$$

8)
$$\frac{1}{3} - \frac{i}{3}$$

3)
$$-2 - 2i$$

6)
$$-2 + 2i\sqrt{3}$$

77 Donner une valeur approchée au centième d'un argument de chacun des nombres complexes suivants :

1)
$$4 - 3i$$

3)
$$-2 + i$$

2)
$$1 + 2i$$

4)
$$-3 - i$$

Exercice 73:

1.
$$7 = 7(\cos(0) + i\sin(0))$$

2.
$$5i = 5\left(\cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2})\right)$$

3.
$$-2 - 2i = 2\sqrt{2} \left(\cos(\frac{-3\pi}{4}) + i\sin(\frac{-3\pi}{4})\right)$$

4.
$$i + \sqrt{3} = 2\left(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6})\right)$$

5.
$$-5 = 5(\cos(\pi) + i\sin(\pi))$$

6.
$$-2 + 2i\sqrt{3} = 4\left(\cos(\frac{-2\pi}{3}) + i\sin(\frac{-2\pi}{3})\right)$$

7.
$$\frac{1}{2} + \frac{i}{2} = \frac{\sqrt{2}}{2} \left(\cos(\frac{\pi}{4}) + i \sin(\frac{\pi}{4}) \right)$$

8.
$$\frac{1}{3} - \frac{i}{3} = \frac{\sqrt{2}}{3} \left(\cos(-\frac{\pi}{4}) + i \sin(-\frac{\pi}{4}) \right)$$

Corrigé des exercices

Exercice 77:

1.
$$\approx -0.64$$

2.
$$\approx 1,11$$

3.
$$\approx 2,68$$

4.
$$\approx -2.82$$

III. Module, argument et opérations avec les nombres complexes

Dans les deux théorèmes qui suivent z et z' sont des nombres complexes.

Théorème

$$1 z \times \overline{z} = |z|^2$$

$$|-z| = |z|$$
 $\arg(-z) = \arg(z) + \pi [2\pi] \text{ pour } z \neq 0.$

$$|z| = |\overline{z}| \qquad \operatorname{arg}(\overline{z}) = -\operatorname{arg}(z) [2\pi] \operatorname{pour} z \neq 0.$$

$$|z \times z'| = |z| \times |z'| \qquad \arg(z \times z') = \arg(z) + \arg(z') [2\pi] \text{ pour } z \neq 0 \text{ et } z' \neq 0.$$

$$|z^n| = |z|^n \text{ pour } n \in \mathbb{N} \qquad \arg(z^n) = n \times \arg(z) [2\pi] \text{ si } z \neq 0.$$

1	$z \times \overline{z} = z ^2$	
2	-z = z	$arg(-z) = arg(z) + \pi [2\pi] pour z \neq 0.$
3	$ z = \overline{z} $	$arg(\overline{z}) = -arg(z) [2\pi] pour z \neq 0.$
4	$ z \times z' = z \times z' $	$arg(z \times z') = arg(z) + arg(z') [2\pi] pour z \neq 0 \text{ et } z' \neq 0.$
6	$ z^n = z ^n$ pour $n \in \mathbb{N}$	$arg(z^n) = narg(z) [2\pi] $ si $z \neq 0$.

Preuve:

- 1 Ce point a été déjà prouvé précédemment.
- 2 Il suffit d'utiliser la propriété de symétrie par rapport à l'origine.
- 3 De même avec la symétrie par rapport l'axe des ordonnées.
- 4 Si z = 0 ou z' = 0, alors |zz'| = 0 et |z||z'| = 0 d'où l'égalité. Si $z, z' \in \mathbb{C}^*$ alors : $z = r(\cos(\theta) + i\sin(\theta))$ et $z = r'(\cos(\theta') + i\sin(\theta'))$. $zz' = rr'(\cos(\theta)\cos(\theta') - \sin(\theta)\sin(\theta') + i(\cos(\theta)\sin(\theta') + \cos(\theta')\sin(\theta))$. Ce qui donne d'après les formules d'addition pour sinus et cosinus : $zz' = rr'(\cos(\theta + \theta') + i\sin(\theta + \theta'))$.

Or, rr' > 0 donc zz' = rr' = |z||z'| et $arg(zz') = \theta + \theta' = arg(z) + arg(z')$ $[2\pi]$. Ce qui prouve bien le point 4).

5 Ces égalités se montrent par récurrence.

Théorème

1
$$z \neq 0$$
: $\left| \frac{1}{z} \right| = \frac{1}{|z|}$ $\operatorname{arg}\left(\frac{1}{z}\right) = -\operatorname{arg}(z) \left[2\pi \right]$
2 $z' \neq 0$: $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$ $\operatorname{arg}\left(\frac{z}{z'}\right) = \operatorname{arg}(z) - \operatorname{arg}(z') \left[2\pi \right] \ pour \ z \neq 0$

Preuve:

1 z est un complexe non nul. On a $z \times \frac{1}{z} = 1$ qui donne d'une part $\left| z \times \frac{1}{z} \right| = 1$ c'est-à -dire $\left| z \right| \times \left| \frac{1}{z} \right| = 1$. Et enfin $\left| \frac{1}{z} \right| = \frac{1}{|z|}$.

D'autre part, $\arg\left(z \times \frac{1}{z}\right) = \arg(1)[2\pi]$ donne $\arg(z) + \arg\left(\frac{1}{z}\right) = 0[2\pi]$.

On en conclut le point 1.

2 z et z' deux complexes avec $z' \neq 0$

$$\left|\frac{z}{z'}\right| = \left|z \times \frac{1}{z'}\right| = |z| \times \left|\frac{1}{z'}\right| = |z| \times \frac{1}{|z'|} = \frac{|z|}{|z'|}$$
 et si $z \neq 0$: $\operatorname{arg}\left(\frac{z}{z'}\right) = \operatorname{arg}\left(z \times \frac{1}{z'}\right) = \operatorname{arg}(z) + \operatorname{arg}\left(\frac{1}{z'}\right) = \operatorname{arg}(z) - \operatorname{arg}(z') [2\pi].$

Méthode 3 - Comment utiliser les propriétés des modules et arguments

Exercice d'application

- 1. $z_1 = -\sqrt{3} + i$ et $z_2 = \frac{1}{6} \frac{\sqrt{3}}{6}i$ deux nombres complexes. Déterminer le module et un argument de z_1z_2 .
- 2. Déterminer la forme algébrique de $\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{2016}$.

Correction page suivante

Correction

1) •
$$|z_1| = \sqrt{3+1} = 2$$
 et $|z_2| = \sqrt{\frac{1}{36} + \frac{3}{36}} = \frac{1}{3}$. Donc: $|z_1 z_2| = |z_1| |z_2| = 2 \times \frac{1}{3} = \frac{2}{3}$.

•
$$\theta_1 = \arg(z_1)$$
 est tel que
$$\begin{cases} \cos(\theta_1) &= \frac{-\sqrt{3}}{2} \\ \sin(\theta_1) &= \frac{1}{2} \end{cases}$$

$$\sin(\theta_1) = \frac{1}{2} \iff \theta_1 = \frac{\pi}{6} [2\pi] \text{ ou } \frac{5\pi}{6} [2\pi], \text{ or } \cos(\theta_1) < 0 \text{ donc } \theta_1 = \frac{5\pi}{6} [2\pi]$$

$$\theta_2 = \arg(z_2) \text{ est tel que} \begin{cases} \cos(\theta_2) &= \frac{\frac{1}{6}}{\frac{1}{3}} \\ \sin(\theta_2) &= \frac{\frac{1}{6}}{\frac{1}{3}} \end{cases} \iff \begin{cases} \cos(\theta_2) &= \frac{1}{2} \\ \sin(\theta_2) &= \frac{\sqrt{3}}{\frac{1}{3}} \end{cases}$$

$$\cos(\theta_2) = \frac{1}{2} \iff \theta_2 = \frac{\pi}{3}[2\pi] \text{ ou } \frac{-\pi}{3}[2\pi], \text{ or } \sin(\theta_2) > 0 \text{ donc } \theta_2 = \frac{\pi}{3}[2\pi].$$

Donc:
$$arg(z_1z_2) = arg(z_1) + arg(z_2) = \frac{5\pi}{6} + \frac{\pi}{3} = \frac{7\pi}{6}$$
 [2 π].

2) On remarque : $z = -\frac{1}{2} + \frac{\sqrt{3}}{2}i = -3z_2$ et donc :

$$|z| = 3 \times |z_2| = 1$$
 et $\arg(z) = \arg(z_2) + \pi[2\pi] = -\frac{2\pi}{3}[2\pi]$

$$\arg\left(z^{2016}\right) = 2016 \times \arg(z) = 2016 \times \frac{2\pi}{3}[2\pi] = 672 \times 2\pi[2\pi] = 0[2\pi].$$

De plus
$$|z| = 1$$
 donc $|z^{2016}| = |z|^{2016} = 1$.

On en déduit :
$$z^{2016} = 1 \times (\cos(0) + i\sin(0)) = 1$$
.

IV. Applications des nombres complexes à la géométrie

Théorème

• Soient A et B deux points distincts d'affixes respectives z_A et z_B .

$$AB = ||\overrightarrow{AB}|| = |z_B - z_A| \text{ et } \arg(z_B - z_A) = (\overrightarrow{u}, \overrightarrow{AB}) [2\pi].$$

• Soient A, B, C et D quatre points distincts d'affixes respectives z_A , z_B , z_C et z_D .

$$\operatorname{arg}\left(\frac{z_D - z_C}{z_B - z_A}\right) = \left(\widehat{AB}, \widehat{CD}\right) [2\pi]$$

- $AB = ||\overrightarrow{AB}|| = |z_B z_A|$ et $\arg(z_B z_A) = (\overrightarrow{u}, \overrightarrow{AB}) [2\pi].$
- $\arg\left(\frac{z_D z_C}{z_B z_A}\right) = (\widehat{AB}, \widehat{CD})$ [2 π]

Preuve:

- Soient A et B deux points distincts d'affixes respectives z_A et z_B .
 - Il existe un unique point M d'affixe z tel que $\overrightarrow{OM} = \overrightarrow{AB}$. Les affixes de ces deux vecteurs sont donc égales ce qui donne : $z = z_B z_A$.
 - On en déduit que $|z| = |z_B z_A|$ et $\arg(z) = \arg(z_B z_A)$ $[2\pi]$.
 - Donc $OM = AB = |z_B z_A|$ et $(\overrightarrow{u}, \overrightarrow{OM}) = (\overrightarrow{u}, \overrightarrow{AB}) = \arg(z_B z_A)[2\pi]$.
- Soient A, B, C et D quatre points distincts d'affixes respectives z_A , z_B , z_C et z_D . Par les propriétés de l'argument on a :

$$\arg\left(\frac{z_D - z_C}{z_B - z_A}\right) = \arg(z_D - z_C) - \arg(z_B - z_A)$$

Ce qui donne par définition de l'argument :

$$\arg\left(\frac{z_D - z_C}{z_B - z_A}\right) = (\overrightarrow{u}, \overrightarrow{CD}) - (\overrightarrow{u}, \overrightarrow{AB}) = (\overrightarrow{AB}, \overrightarrow{u}) + (\overrightarrow{u}, \overrightarrow{CD}) = (\overrightarrow{AB}, \overrightarrow{CD})[2\pi]$$

la dernière égalité résultant de la relation de Chasles pour les angles de vecteurs.

Méthode 4 - Ensembles de points

Exercice d'application

Dans chacun des cas suivants, déterminer l'ensemble des points M d'affixe z satisfaisant la condition :

- |z + 1 i| = 3.
- |z-3| = |z+2+3i|.
- $\arg(z-1-i) = \frac{\pi}{4}[2\pi].$
- $\operatorname{arg}\left(\frac{z-1+2i}{z+1}\right) = \frac{\pi}{2}[\pi].$

Correction

- $|z+1-i| = 3 \Leftrightarrow |z-(-1+i)| = 3 \Leftrightarrow AM = 3$ avec A point d'affixe $z_A = -1+i$. Donc M appartient au cercle de centre A(-1; 1) et de rayon 3.
- $|z-3| = |z+2+3i| \Leftrightarrow |z-3| = |z-(-2-3i)| \Leftrightarrow BM = CM$ avec B d'affixe $z_B = 3$ et C d'affixe $z_C = -2-3i$.

Donc M appartient à la médiatrice de [BC].

• $\arg(z-1-i) = \pi/4[2\pi] \Leftrightarrow \arg(z-(1+i)) = \pi/4[2\pi] \Leftrightarrow (\overrightarrow{u}, \overrightarrow{EM}) = \frac{\pi}{4}[2\pi] \text{ avec } E \text{ d'affixe } z_E = 1+i.$

Donc M appartient à la demi-droite d'origine E privé de E, de vecteur directeur $\overrightarrow{u_1}$ tel que $(\widehat{\overrightarrow{u}}, \widehat{u_1}) = \frac{\pi}{4}$.

•
$$\arg\left(\frac{z-1+2i}{z+1}\right) = \frac{\pi}{2} \left[\pi\right] \Leftrightarrow \left(\widehat{GM}, \widehat{FM}\right) = \frac{\pi}{2} \left[\pi\right] \text{ avec } F \text{ d'affixe } z_F = 1-2i \text{ et } G \text{ d'affixe } z_G = -1.$$

Donc M appartient au cercle de diamètre [FG] privé des points F et G

Remarques

1) Trois points distincts sont alignés si et seulement si : $(\overrightarrow{AB}, \overrightarrow{AC}) = 0$ $[\pi]$ ce qui équivaut à :

$$\arg\left(\frac{z_C - z_A}{z_B - z_A}\right) = 0 \ [\pi] \Leftrightarrow \frac{z_C - z_A}{z_B - z_A} \text{ est un réel non nul.}$$

2) Un triangle *ABC* est rectangle en *A* si et seulement si : $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{2}[\pi]$

c'est-à -dire:
$$\arg\left(\frac{z_C - z_A}{z_B - z_A}\right) = \frac{\pi}{2} [\pi] \text{ et } B \neq A \text{ et } C \neq A$$

$$\Leftrightarrow \frac{z_C - z_A}{z_B - z_A} \quad \text{est un imaginaire pur non nul.}$$

Méthode 5 - Nombres complexes et configurations géométriques

Exercice d'application

A, B, C trois points d'affixes respectives : $z_A = 2i$, $z_B = 2 + i$, $z_C = 1 - i$.

Démontrer que le triangle ABC est isocèle rectangle en B.

Correction

$$AB = |z_B - z_A| = |2 - i| = \sqrt{2^2 + (-1)^2} = \sqrt{5}$$
 et

$$BC = |z_C - z_B| = |-1 - 2i| = |1 + 2i| = \sqrt{5}$$
 donc *ABC* isocèle en *B*.

D'autre part :

$$\frac{z_A - z_B}{z_C - z_B} = \frac{-2 + i}{-1 - 2i} = \frac{(-2 + i)(-1 + 2i)}{1 + 4} = -i$$

Donc
$$(\widehat{BA}, \widehat{BC}) = \arg(\frac{z_A - z_B}{z_C - z_B}) = \arg(i) = \frac{\pi}{2}$$
 [2 π] donc ABC est rectangle en B .