Limites et continuité

I. Limite d'une fonction en l'infini

Dans toute cette partie, C_f désigne la courbe représentative de la fonction f dans un repère quelconque du plan.

1. Limite finie en l'infini

Définition

Soit f une fonction définie au moins sur un intervalle de \mathbb{R} du type a; $+\infty$.

.....

On note alors:

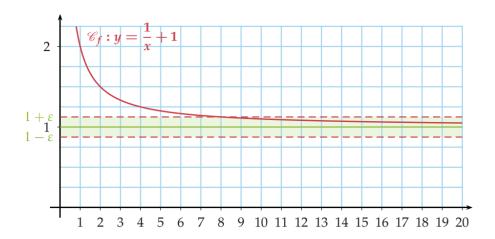
Exemple

Soit f la fonction définie sur]0; $+\infty$ [par $f(x) = \frac{1}{x} + 1$. On a $\lim_{x \to +\infty} \left(\frac{1}{x} + 1\right) = \dots$...

En effet, l'inverse de x se rapproche de 0 à mesure que x augmente.

Soit un intervalle ouvert I tel que $1 \in I$. Alors, f(x) sera toujours dans I pour x assez grand.

Graphiquement, aussi étroite que soit une bande parallèle à la droite d'équation y = 1 et qui la contient, il existe toujours une valeur de x au delà de laquelle \mathcal{C}_f ne sort plus de cette bande.



Définition : Asymptote horizontale

La droite d'équation est ... à $\mathcal{C}_{\mathbf{f}}$ en $+\infty$ si

Remarque: On définit de façon analogue qui caractérise une asymptote horizontale à C_f en -∞ d'équation

Exemple

On a vu précédemment que $\lim_{x\to +\infty} \left(\frac{1}{x}+1\right) = \dots$. On a aussi $\lim_{x\to -\infty} \left(\frac{1}{x}+1\right) = \dots$. Donc, la droite d'équation est ... à la courbe \mathcal{C}_f en $+\infty$ et en $-\infty$.

Propriétés admises : Limites finies des fonctions usuelles en $\pm \infty$

Soit *n* un entier naturel non nul.

$$\lim_{x \to +\infty} \left(\frac{1}{\sqrt{x}} \right) = \lim_{x \to +\infty} \frac{1}{x^n} = \dots \dots \text{ et } \lim_{x \to -\infty} \left(\frac{1}{x^n} \right) = \dots \dots$$

2. Limite infinie en l'infini

Définition

.....

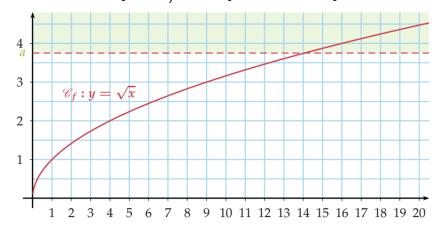
Exemple

Soit f la fonction racine carrée. On a $\lim_{x \to +\infty} \sqrt{x} = \dots \dots \dots$

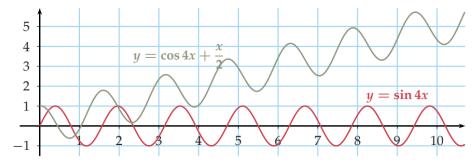
En effet, \sqrt{x} devient aussi grand que l'on veut à mesure que x augmente.

Soit un intervalle ouvert $I = a; +\infty[$. Alors, f(x) sera toujours dans I pour x assez grand.

Graphiquement, si on considère le demi-plan supérieur de frontière une droite d'équation y = a, il existe toujours une valeur de a au delà de laquelle C_f ne sort plus de ce demi-plan.



- On définit de façon analogue :.....
- Il existe des fonctions qui n'admettent pas de limite en l'infini. Par exemple, les fonctions et n'admettent de limite ni en $+\infty$, ni en $-\infty$.
- Une fonction qui tend vers $+\infty$ lorsque x tend vers $+\infty$ n'est



Propriétés - Limites infinies des fonctions usuelles en $\pm \infty$

Soit *n* un entier naturel non nul.

•
$$\lim_{x \to +\infty} \sqrt{x} = \lim_{x \to +\infty} x^n = \dots \dots \dots$$

•
$$\lim_{x \to +\infty} \sqrt{x} = \lim_{x \to +\infty} x^n = \dots \dots \dots$$
•
$$\lim_{x \to -\infty} x^n = \{\dots \dots \text{ pour } \dots \dots \dots \}$$

II. Limite infinie en un réel

Définition

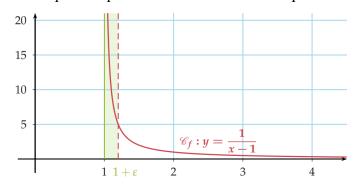
Soit f une fonction définie sur un intervalle ouvert de \mathbb{R} du type $]x_0 - \varepsilon; x_0[$ ou $]x_0; x_0 + \varepsilon[$. La fonction f a pour limite $+\infty$ en x_0 si On note alors:

Exemple

Soit f la fonction définie sur]1; $+\infty$ [par $f(x) = \frac{1}{x-1}$. On a $\lim_{x \to 1} \left(\frac{1}{x-1}\right) = \dots \dots$

En effet, si x tend 1, alors x-1 tend vers ... et son inverse tend vers

Soit un intervalle ouvert I =]1; $1 + \varepsilon[$. Alors, f(x) sera toujours dans I pour x assez proche de x_0 . Graphiquement, C_f peut être aussi proche que l'on veut de la droite d'équation x = 1.



Définition : Asymptote verticale

La droite d'équation est asymptote verticale à $\mathcal{C}_{\mathbf{f}}$ si

Exemple

On a vu précédemment que $\lim_{x\to 1} \left(\frac{1}{x-1}\right) = \dots$

Donc, la droite d'équation est asymptote verticale à l'hyperbole

Remarques:

- Lorsque x tend vers x_0 , cela peut parfois se faire en augmentant ou en diminuant. On parle alors de limite de f à gauche (resp. droite) en x_0 qu'on note (resp. (resp.).
- Une fonction admet une limite en x_0 si, et seulement si, f admet des limites à droite et à gauche en x_0 qui sont (ce qui n'est pas toujours le cas).
- Une fonction peut très bien ne pas avoir de limite du tout en un point. Par exemple, la fonction $x \mapsto \sin \frac{1}{x}$ n'a pas de limite en 0.

Propriétés (admises) - Limites finies des fonctions usuelles en 0

Soit n un entier naturel non nul.

•
$$\lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{1}{\sqrt{x}} \right) = \lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{1}{x^n} \right) = \dots \dots$$

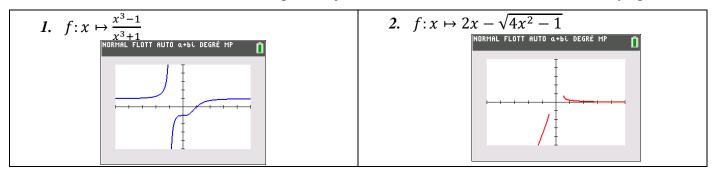
•
$$\lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{1}{\sqrt{x}}\right) = \lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{1}{x^n}\right) = \dots \dots$$
•
$$\lim_{\substack{x \to 0 \\ x < 0}} \left(\frac{1}{x^n}\right) = \begin{cases} \dots \dots \dots \\ \dots \dots \dots \\ \dots \dots \dots \end{cases}$$
pour \(\dots\) pour \(\dots\)

Méthode 1 - Interpréter graphiquement les limites d'une fonction

L'aperçu de la courbe représentative d'une fonction avec une calculatrice ou un logiciel peut aider à conjecturer une limite (et donc éventuellement une asymptote à la courbe) mais il faut paramétrer correctement la fenêtre d'affichage pour limiter les erreurs de jugement.

Exercice d'application : Soit f une fonction dont on a un aperçu du graphe C.

Déterminer son ensemble de définition \mathcal{D} , puis conjecturer les limites aux bornes de \mathcal{D} et les asymptotes à \mathcal{C} .



III. Opérations sur les limites

Propriété - Limite d'une somme, d'un produit et d'un quotient de deux fonctions

• Limite d'une somme :

f	\boldsymbol{g}	f + g

• Limite d'un produit :

f	g	fg

• Limite d'un quotient :

f	$oldsymbol{g}$	f/g

- ∞ peut signifier $+\infty$ ou $-\infty$. Les règles du signe d'un produit ou d'un quotient demeurent.
- Pour la limite de la différence f g, on considère la limite de la somme f + (-g).
- Les quatre lignes grises des tableaux correspondent aux quatre cas d'indétermination :

.....

Plusieurs techniques seront vues pour lever une indétermination.

Exemple

Soit $f: x \mapsto (1-x)\left(x^3 + \frac{1}{x}\right)$ définie sur \mathbb{R}^* . Calculons $\lim_{x \to +\infty} f(x)$.

.....

IV. Limite d'une fonction composée

1. Fonction composée

Cependant, on voit que la fonction g ne peut s'appliquer que si l'ensemble des images par la fonction f est inclus dans

Ainsi, pour appliquer ici la racine carrée, il faut que c'est-à -dire que

La composée existe donc dans le schéma suivant où on précise les ensembles de départ et d'arrivée pour f:

En composant f suivie de g, on a ainsi défini sur la fonction $x \mapsto \dots \dots$

Définition

Soit f une fonction définie sur E et à valeurs dans F, et soit g une fonction définie sur F.

La composée de f suivie de g est la fonction notée définie sur E par

Remarque: Il ne faut pas confondre et qui sont, en général, différentes.

Exemple

En reprenant f et g de l'exemple précédent, définissons $f \circ g$.

La composée de g suivie de f est possible en partant de l'ensemble de définition de g:

En composant g suivie de f, on a ainsi défini sur la fonction $x \mapsto \dots \dots$

2. Théorème de composition des limites

Théorème

Soit h la composée de la fonction f suivie de g et α , β et γ trois réels ou $\pm \infty$.

Si
$$\lim_{x \to \dots} f(x) = \dots$$
 et $\lim_{x \to \dots} g(x) = \dots$, alors $\lim_{x \to \dots} h(x) = \dots$

Exemple

Déterminons la limite en $-\infty$ de la fonction $g \circ f$ de l'exemple précédent.

La composée de $f: x \mapsto 1 - x$ suivie de $g: x \mapsto \sqrt{x}$ est $h: x \mapsto \sqrt{1 - x}$ définie sur $] - \infty; 1]$.

Or, $\lim_{x \to -\infty} (1 - x) = \dots$ (par somme) et $\lim_{x \to +\infty} \sqrt{x} = \dots$ (limite de référence).

Donc, d'après le théorème de composition, $\lim_{x\to-\infty} \sqrt{1-x} = \dots$

Méthode 2 – Déterminer une limite de fonction

On applique les propriétés d'opérations sur les limites.

Si la limite est indéterminée, « $+\infty + (-\infty)$ », « $0 \times \infty$ », « $\frac{\infty}{\infty}$ » ou « $\frac{0}{0}$ », on essaye de :

- Factoriser par le terme prépondérant ;
- Multiplier par la quantité conjuguée si des racines carrées interviennent ;
- Effectuer un changement de variable (voir théorème de composition des limites).

D'autres techniques existent et seront vues ultérieurement.

Exercice d'application

Calculer les limites suivantes :
$$\lim_{x \to +\infty} \left(\sqrt{x+1} - \sqrt{x} \right)$$
; $\lim_{x \to +\infty} \left(\frac{2x^2 - 3x + 1}{x^2 - 1} \right)$; $\lim_{x \to 4} \frac{x - 4}{\sqrt{x} - 2}$